ภูเขาขยะ

สารคดีสั้นเรื่อง Plastic Mountain https://www.tvnz.co.nz/one-news/new-zealand/plastics-mountain?ref=emailfriend สะท้อนสถานการณ์การค้าขยะพลาสติกโลกและมายาคติของการรีไซเคิลได้อย่างแจ่มแจ้ง

นิวซีแลนด์ซึ่งเป็นประเทศที่มีระบบการจัดการวัสดุเหลือใช้ที่ก้าวหน้ารวมถึงเครือข่าย Zero Waste ที่เข้มแข็ง คนกีวีอาจคิดว่าขยะพลาสติกมีการนำรีไซเคิลอย่างดีในประเทศ แต่จริงๆ แล้ว ขยะพลาสติกปริมาณมหาศาลจากนิวซีแลนด์นั้นส่งออกไปยังประเทศต่างๆ ในเอเชียในนามของการรีไซเคิล โดยที่อินโดนีเซียคือปลายทางสำคัญ แต่สุดท้ายก็กลายเป็นภูเขาขยะที่ก่อปัญหาสิ่งแวดล้อมตามมา

สถานการณ์เช่นนั้นจะดำรงอยู่ต่อไปหากการผลิตพลาสติกของโลกยังเพิ่มขึ้น เพิ่มขึ้นและเพิ่มขึ้น

พื้นที่เผาไหม้ (Fire Burn Scar)

 Woolsey Fire เป็นไฟป่าที่เกิดขึ้นทางตอนใต้ของรัฐแคลิฟอร์เนียได้ทิ้งร่องรอยไว้บนภูมิทัศน์ที่กินพื้นที่กว้างขวางที่สามารถเห็นได้ง่ายจากอวกาศ ในวันที่ 19 พฤศจิกายน 2561 Cal Fire รายงานว่าสามารถควบคุมไฟได้ร้อยละ 94 และมีพื้นที่เผาไหม้เกือบ 97,000 เอเคอร์ (393 ตารางกิโลเมตรหรือ 152 ตารางไมล์)

หนึ่งวันก่อนหน้านั้นเครื่องมือ Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) บนดาวเทียม Terra ของนาซาจับภาพพื้นที่เผาไหม้นี้ไว้ได้ สีภาพถ่ายดาวเทียมนี้เป็นอินฟาเรดสีเทียม(false-color) ช่วงแบนด์ 3, 2, 1 ได้นำมาขยายให้เกิดสักษณะสีที่เป็นธรรมชาติมากขึ้น พืชพรรณที่ถูกเผาไหม้แสดงในสีน้ำตาล แสดงในสีน้ำตาล ส่วนพืชพรรณที่ไม่ถูกเผาไหม้แสดงในสีเขียว อาคารบ้านเรือน ถนนและอื่นๆ ในพื้นที่ที่พัฒนาแสดงในสีเทาและขาว

ข้อมูลภาพถ่ายดาวเทียมอื่นๆ ของนาซานำไปใช้ในการทำแผนที่แสดงระดับความรุนแรงของพื้นที่เผาไหม้(Preliminary burn severity maps)ซึ่งจะช่วยเจ้าหน้าที่ที่เกี่ยวข้องกับการจัดการและควบคุมไฟป่าวางแผนการฟื้นฟูพื้นที่

NASA Earth Observatory image by Joshua Stevens, using data from NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Story by Kathryn Hansen.

ควันไฟป่าจะลอยไปทางไหน?

ธารา บัวคำศรี – แปลเรียบเรียงจาก https://earthobservatory.nasa.gov/images/144190/which-way-will-the-smoke-go

6 สิงหาคม 2561

ตอนที่กรมป่าไม้ของสหรัฐอเมริกา(the U.S. Forest Service) ประกาศว่าได้ควบคุมเหตุไฟป่าที่ Mendocino Complex Fire ได้ 100 เปอร์เซ็นแล้วในช่วงกลางเดือนกันยายน 2561 ที่ผ่านมา ไฟป่าได้เกิดขึ้นเกือบสองเดือน บ้านเรือนเสียหาย 157 หลังและ เผาผลาญพื้นที่มากกว่า 459,000 เอเคอร์ ถือเป็นเหตุไฟป่าครั้งใหญ่ที่สุดในประวัติศาสตร์ของรัฐแคลิฟอร์เนีย ระหว่างวันที่ 1 มกราคมจนถึงวันที่ 4 พฤศจิกายน โดยที่หมอกควันไฟกระจายไปทั้งภูมิภาคและส่วนต่างๆ ของประเทศ

ในอดีต พฤติกรรมของไฟป่าและแนวควันไฟนั้นยากแก่การคาดการณ์อย่างยิ่ง Andy Edman, จาก Western region wildfires for the National Weather Service กล่าวว่า “เป็นความท้าทายสำหรับแบบจำลองสภาพภูมิอากาศที่จะรู้ว่ามีไฟป่าที่ไหน สถานะเป็นอย่างไร และมีการปล่อยออกสู่บรรยากาศมากน้อยแค่ไหน มันคล้ายๆ กับงานรวมญาติ เกือบทุกคนทำตัวตามปกติ แต่พฤติกรรมของไฟป่าอาจคล้ายๆ กับลุงบ้าๆ ของคุณ ยากที่จะทำนาย”

แต่แบบจำลองใหม่ที่ใช้ข้อมูลจากดาวเทียมของ NOAA และ NASA นั้นได้พิสูจน์ให้เห็นว่าสามารถจำลองพฤติกรรมของควันไฟป่าได้ดีทีเดียว แบบจำลองชื่อ High-Resolution Rapid Refresh Smoke model, หรือ HRRR-Smoke ทำขึ้นจากแบบจำลองสภาพอากาศ  HRRR ที่มีอยู่แล้วของ NOAA ซึ่งทำการคาดาการณ์ฝน ลมและพายุ แบบจำลองนี้ยังนำข้อมูลเวลาจริงจากดาวเทียม the Joint Polar Satellite System’s Suomi-NPP และ NOAA-20 polar-orbiting satellites และ NASA’s Terra and Aqua satellites

ภาพบนซ้ายมาจาก Visible Infrared Imaging Radiometer Suite(VIIRS) บนดาวเทียม Suomi-NPPแสดงพื้นที่ภาคตะวันตกของสหรัฐอเมริกาในสีธรรมชาติช่วงบ่ายของวันที่ 6 สิงหาคม 2561 ในช่วงเหตุการณ์ไฟป่า the Mendocino Complex Fire สูงสุด ส่วนภาพบนขวาแสดงการจำลองการเคลื่อนตัวของควันไฟป่า (HRRR-Smoke simulation) จากพื้นที่และช่วงเวลาเดียวกัน

หัวใจสำคัญของแบบจำลอง HRRR-Smoke คือเมตริกที่เรียกว่า fire radiative power หรือ FRP โดยเป็นการวัดปริมาณความร้อนที่แผ่ออกมาจากเหตุการณ์ไฟที่มีการพิจารณาในหน่วยเมกะวัตต์ ตัวอย่างเช่น ไฟป่าขนาดใหญ่อาจมีความร้อนถึง 4,000 เมกะวัตต์ต่อพิกเซล (750×750 เมตร) การคำนวณหา radiative power และการกระจายตัวว่าไปทางไหนบ้าง สามารถช่วยนักวิทยาศาสตร์ชี้จุดเกิดไฟและคาดการณ์ความเข้มข้นและเส้นทางที่ควันไฟป่าจะลอยไป

แบบจำลอง HRRR-smoke model นำรวมกับข้อมูล FRP data ที่รวบรวมความเร็วลมและอุณหภูมิในบรรยากาศ รวมถึงแผนที่พืชพรรณ ยิ่งนักวิทยาศาสตร์ได้รู้ว่าอะไรถูกเผา การคาดการณ์โดยแบบจำลองก็จะดีขึ้น การวัดดังกล่าวนี้นำมาเป็นวางให้เป็นกริดสามมิติที่ขยายสูงราว 16 ไมล์ในบรรยากาศ ผลที่ได้คือการคาดการณ์ที่ละเอียดถึงปริมาณควันที่เกิดขึ้นจากไฟป่า ทิศทางที่ควันจะปล่อย และความสูงของควัน

August 6 – 7, 2018

Ravan Ahmadov ผู้พัฒนาแบบจำลอง HRRR-smoke model และนักวิจัยประจำ NOAA’s Earth Systems Research Laboratory และ the Cooperative Institute for Research in Environmental Sciences กล่าว “ควันไฟป่าใกล้พื้นผิวเป็นดัชนีของมลพิษทางอากาศ แต่ควันไฟป่าอาจลอยขึ้นไปในบรรยากาศที่สูงได้ เป็นเรื่องสำคัญมากที่จะรู้ เพราะว่าควันไฟป่าสามารถกระทบกับการเดินอากาศได้” ควันไฟป่าในบรรยากาศระดับสูง สามารถกันแสงอาทิตย์ที่มาจากนอกโลกซึ่งช่วยอุณหภูมิอากาศเย็นลงและเข้ารบกวนการผลิตพลังงานแสงอาทิตย์

แบบจำลอง HRRR-Smoke ถูกนำไปใช้โดยนักพยากรณ์อากาศและหน่วยงานรัฐ รวมถึงกลุ่มท้องถิ่น ในช่วงเหตุการณ์ไฟป่า Ferguson fire ในแคลิฟอร์เนีย กรมการขนส่งใช้แบบจำลอง HRRR-Smoke ในการช่วยตัดสินใจยกเลิกบริการรถไฟ Amtrak ในพื้นที่ นอกจากนี้ ยังถูกนำไปใช้กับกรมอุทยานแห่งชาติในช่วงปิดอุทยาน Yosemite

ในระดับท้องถิ่น โรงเรียนในรัฐยูทาอ้างถึงแบบจำลองเมื่อจะต้องเลือกให้เด็กนักเรียนอยู่ในอาคารในช่วงพักและเพื่อยกเลิกการแข่งขันกีฬาฟุตบอลอันเนื่องมาจากเหตุไฟป่าทางตอนใต้ของ Provo ในรัฐโอเรกอน โค้ชผู้ฝึกสอนว่ายน้ำเยาวชนย้ายการฝึกไปในสระว่ายน้ำในร่มหลังจากรับทราบถึงการพยากรณ์เรื่องควันไฟป่า

Edman กล่าวว่า “เมื่อเราสามารถแจ้งผู้คนให้ทราบว่าควันไฟป่าจะพัดไปทางใดและจะลอยค้างอยู่กี่วัน พวกเขาสามารถที่ว่าจะอะไรเพื่อตอบรับเหตุการณ์ที่เกิดขึ้น ถ้าคุณมีบุตรหลานที่เป็นโรคหืดหอบ คุณจะรู้ว่าต้องระวังมากขึ้น”

แม่สายในดงฝุ่น PM2.5 : ข้อสังเกตว่าด้วยมลพิษจากหมอกควันข้ามพรมแดนในอนุภูมิภาคลุ่มน้ำโขง

ธารา บัวคำศรี

ดังที่เรารับรู้กัน ภาคเหนือตอนบนของประเทศไทยอยู่ภายใต้ดงฝุ่น PM2.5 มานานนับเดือนแล้ว เมื่อดูข้อมูลย้อนหลังจากสถานีตรวจวัดคุณภาพอากาศของกรมควบคุมมลพิษ 13 แห่งที่กระจายตัวอยู่ในพื้นที่จังหวัดต่างๆ เราจะเห็นสถานการณ์ฝุ่น PM2.5 ที่ผู้คนในภาคเหนือกำลังเผชิญอยู่ได้อย่างชัดเจน นี่คือวิกฤตด้านสาธารณสุข(public health emergency) ที่ไม่จบลงเพียงแค่เมื่อฝุ่นจางหายไป

กราฟแสดงความเข้มข้นของ PM2.5 ระหว่างวันที่ 1 มีนาคม – 11 เมษายน 2562 จากสถานีตรวจวัดคุณภาพอากาศ 13 แห่ง ของกรมควบคุมมลพิษในเขตภาคเหนือตอนบน ที่มา : http://air4thai.pcd.go.th/webV2/history/

ในที่นี้จะตั้งข้อสังเกตเบื้องต้นถึงความรุนแรงและยาวนานของปัญหาฝุ่น PM2.5 ในพื้นที่อำเภอแม่สาย จังหวัดเชียงราย ซึ่งต้องตกอยู่ท่ามกลางมลพิษ PM2.5 ในระดับที่ไม่ปลอดภัย (unhealthy)มาเป็นเวลานาน ดัชนีคุณภาพอากาศ(air quality index)ตามเกณฑ์ของประเทศไทยเป็นสีแดงทุกวัน อย่างน้อยที่สุดนับตั้งแต่วันที่ 12 มีนาคมจนถึงวันที่ 11 เมษายน ดังภาพ (ซึ่งเรายังไม่ต้องไปนึกถึงดัชนีคุณภาพอากาศของ USEPA ที่ยึดโยงกับข้อแนะนำของ WHO เลยแม้แต่น้อย)

ที่มา : กรมควบคุมมลพิษ

เมื่อเราพิจารณาเทียบกับพื้นที่อื่นๆ ใน 9 จังหวัดภาคเหนือในช่วงเวลาเดียวกัน ตามฐานข้อมูลของกรมควบคุมมลพิษจะพบว่าไม่มีพื้นที่(ที่เป็นที่ตั้งของตรวจวัดคุณภาพอากาศ)แห่งใดเลยที่มีดัชนีคุณภาพอากาศเป็นสีแดงต่อเนื่องกันทุกวันดังเช่นคุณภาพอากาศที่อำเภอแม่สาย

หมอกควันพิษข้ามพรมแดนปกคลุมอำเภอแม่สาย จังหวัดเชียงราย (Santi Chang อนุเคราะห์ภาพ)

เพราะเหตุใดแม่สายต้องงวยงงในดงฝุ่น PM2.5 เป็นแรมเดือน เราจะพลิกวิกฤตนี้และหลีกเลี่ยง-ป้องกัน-บรรเทามิให้เกิดขึ้นอีกในอนาคตร่วมกันอย่างไร? และนี่คือข้อสังเกตเบื้องต้น

1) แม่สายตกอยู่ในวงล้อมของจุดความร้อนสะสมหนาแน่นในเมียนมาและ สปป.ลาว

ที่มา : https://www.globalforestwatch.org

แผนที่ด้านบนแสดงให้เห็นอย่างชัดเจนว่าพื้นที่อำเภอแม่สาย(ในตำแหน่งที่แสดงเป็นเครื่องหมาย + ในแผนที่) ตกอยู่ในวงล้อมของจุดความร้อนที่สะสมหนาแน่นในเมียนมาและ สปป.ลาว โดยการใช้ข้อมูลจากการตรวจวัดจุดความร้อนสะสมด้วยเครื่องตรวจวัด Visible Infrared Imaging Radiometer Suite (VIIRS) ที่ติดต้ังบนดาวเทียม Suomi NPP ระหว่างวันที่ 6-12 เมษายน พ.ศ.2562

ในประเทศไทย มีการใช้ข้อมูลจากดาวเทียม ชั้นข้อมูล GIS และข้อมูล GPS เพื่อติดตามสถานการณ์ไฟป่าและหมอกควัน ตลอดจนจำแนกแหล่งที่เกิดจุดความร้อนในพื้นที่ต่างๆ ตามลักษณะการใช้ที่ดินไว้ 6 ประเภท ได้แก่ ป่าอนุรักษ์ ป่าสงวนแห่งชาติ เขตการปฏิรูปที่ดินเพื่อเกษตรกรรม(สปก.) พื้นที่เกษตรกรรม พื้นที่ริมทางหลวง (250 เมตร) และชุมชน-อื่นๆ โดยเฉพาะอย่างยิ่งในปี พ.ศ.2558 ได้มีการจำแนกพื้นที่ปลูกข้าวโพดเลี้ยงสัตว์ในแต่ละประเภทการใช้ที่ดินด้วย

นอกจากจุดความร้อน ประเทศไทยโดย GISTDA ยังวิเคราะห์และคำนวณพื้นที่เผาไหม้ (burnt scar) ด้วยการใช้ค่าความแตกต่างของดัชนีการเผาไหม้ (Difference Normalized Burn Ratio; DifNBR) ที่คำนวณจากภาพดาวเทียม LANDSAT-8 ครอบคลุมบริเวณภาคเหนือโดยใช้ภาพต่างช่วงเวลาคือภาพก่อนเกิดไฟป่าและภาพเมื่อเกิดไฟป่าจากความสัมพันธ์ของค่าการสะท้อนแสงของพื้นที่เกิดไฟป่า เมื่อได้ตำแหน่งและพื้นที่ที่เกิดไฟไหม้ก็จะนำข้อมูลพื้นท่ีขอบเขตป่าสงวนแห่งชาติ ขอบเขตพื้นที่ป่าอนุรักษ์ ขอบเขตพื้นที่ สปก. รวมถึงข้อมูลการใช้ประโยชน์ท่ีดินอื่นๆ มาร่วมวิเคราะห์โดยการซ้อนทับ(overlay)กันก็จะทราบได้ว่ามีบริเวณใดบ้างที่เกิดไฟป่า ชุดข้อมูลเหล่านี้สามารถนำมาเชื่อมโยงภาระรับผิดชอบ(accountability)ของคน กลุ่มคนหรือองค์กรที่เกี่ยวข้องกับพื้นที่นั้นได้

คำถามคือในระดับอนุภูมิภาคลุ่มน้ำโขง เรามีข้อมูลในลักษณะเดียวกันนี้หรือไม่? เราจะขับเคลื่อนผู้นำอาเซียนให้ริเริ่มระบบติดตามสถานการณ์หมอกควันของอนุภูมิภาคลุ่มน้ำโขง (Mekong Sub-Regional Haze Monitoring System) เพื่อเฝ้าระวังและระบุตำแหน่งที่เกิดไฟและ/หรือพื้นที่เผาไหม้(burnt scar) และระบุภาระรับผิดในกรณีท่ีเกิดการเผาและก่อให้เกิดมลพิษจากหมอกควันข้ามพรมแดนจากในพื้นที่ที่มีการใช้ประโยชน์ที่ดินในลักษณะต่างๆ โดยเฉพาะพื้นที่เกษตรกรรมพันธสัญญาได้อย่างไร?

2) แม่สาย ใจกลางดงฝุ่น PM2.5 ข้ามพรมแดน

โดยพิจารณาจากข้อมูลแผนที่ Regional Haze Situation จากศูนย์เชี่ยวชาญด้านอุตุนิยมวิทยาแห่งอาเซียน (ASEAN Specialised Meteorological Centre: ASMC) ระหว่างวันที่ 14 มีนาคม ถึง 12 เมษายน 2562 แม่สายคือตัวแทนพื้นที่ของอนุภูมิภาคลุ่มน้ำโขงที่อยู่ ณ ใจกลางดงฝุ่น

แม่สายในดงฝุ่นนี้สะท้อนเรื่องราวทุกมิติว่าด้วยมลพิษทางอากาศข้ามพรมแดน ไม่ว่าจะเป็น (1) การถอด ASEAN Transboundary Haze-Free Roadmap ออกมาเป็นแผนงาน (2) การบรรลุเป้าหมายให้ภูมิภาคอาเซียนเป็นภูมิภาคปลอดหมอกควันข้ามแดนภายในปี 2563 (3) มาตรการปกป้องและติดตามตรวจสอบผลกระทบสุขภาพระยะยาวของประชาชน (4)การทบทวนเป้าหมายและเพื่อความหลากหลายของตัวชี้วัดในการแก้ไขปัญหาไฟป่าและการเผาในที่โล่งในอนุภูมิภาคลุ่มน้ำโขงนอกเหนือจากการที่ใช้จุดความร้อนสะสม ฯลฯ

ที่มา : ASEAN Specialised Meteorological Centre: ASMC
ที่มา : ASEAN Specialised Meteorological Centre: ASMC
ที่มา : ASEAN Specialised Meteorological Centre: ASMC
ที่มา : ASEAN Specialised Meteorological Centre: ASMC
ที่มา : ASEAN Specialised Meteorological Centre: ASMC

แผนที่ “แม่สายในดงฝุ่น” ด้านบนแสดงการกระจายตัวและความเข้มข้นของหมอกควันพิษข้ามพรมแดน (regional haze situation) ระหว่างวันที่ 14 มีนาคม-12 เมษายน 2562 พื้นที่แรเงาสีน้ำตาลอ่อนแสดงขอบเขตของหมอกควันพิษข้ามพรมแดนที่มีความเข้มข้นปานกลาง พื้นที่แรเงาสีน้ำตาลเข้มคือขอบเขตหมอกควันพิษข้ามพรมแดนที่เข้มข้นมาก จุดสีแดงบนแผนที่คือจุดความร้อน(hotspot)ที่บันทึกโดยเครื่องวัดบนดาวเทียม NOAA ส่วนจุดวงกลมสีดำคือตำแหน่งของอำเภอแม่สาย จังหวัดเชียงราย

สุดท้าย การที่อำเภอแม่สายทำลายสถิติพื้นที่ที่มีดัชนีคุณภาพอากาศเป็นสีแดงตามเกณฑ์ของประเทศไทยทุกวันนานนับเดือนดังที่กล่าวมาข้างต้น ถือเป็นเสียงปลุก(wake up call)ผู้กำหนดนโยบายและผู้มีอำนาจตัดสินใจทุกระดับให้ตื่นขึ้นมาจากสภาวะความไม่สนใจใยดี(state of denial) เพื่อทำงานร่วมกับภาคประชาชนที่ตื่นตัว/เข้มแข็ง และผู้มีส่วนได้ส่วนเสียทุกกลุ่ม โดยเฉพาะผู้เล่นในภาคอุตสาหกรรมที่มีห่วงโซ่อุปทานเชื่อมโยงกับการขยายตัวของการปลูกพืชเพื่อเป็นอาหารสัตว์และพืชเชิงเดี่ยวอื่นๆ ที่เป็นแหล่งกำเนิดมลพิษ PM2.5 โดยตั้งเป้าหมายไปสู่ทางออกที่ก้าวหน้า ยั่งยืน เป็นธรรมและไม่ทิ้งใครไว้ข้างหลัง

เรามีพร้อมทุกอย่างเพื่อแก้ปัญหา เหลือแต่เจตจำนงที่ถูกต้องและกล้าหาญของผู้กำหนดนโยบายและผู้มีอำนาจตัดสินใจเท่านั้น

Hazy Perceptions มองเรื่องมลพิษทางอากาศผ่านโซเชียลมีเดีย

ธารา บัวคำศรี

ในการเรียกร้องให้อากาศดีกลับคืนมา หรือข้อเสนอให้ออกกฏหมายอากาศสะอาด (Clean Air Act) นั้นต้องการความเข้าใจที่เพิ่มมากขึ้นของประชาชนในเรื่องของมลพิษทางอากาศ ในการระบุช่องว่างดังกล่าวและมองหาโอกาสในการสื่อสารที่ดีขึ้น รายงานเรื่อง Hazy Perceptions  ได้สำรวจการรับรู้ของผู้รับสาร (audience perception) ผ่านบทสนทนาบนโซเชียลมีเดียและสื่อแขนงต่างๆ ที่เกี่ยวกับมลพิษทางอากาศและผลกระทบสุขภาพในภูมิภาคเอเชียใต้และเอเชียตะวันออกเฉียงใต้ 11 ประเทศ

การวิเคราะห์ทำขึ้นผ่านเนื้อหาข่าวและโซเชียลมีเดีย 530,000 ชิ้น ในช่วงเดือนมกราคม 2558 ถึงเดือนตุลาคม 2561 ในอินเดีย ศรีลังกา เนปาล ฟิลิปปินส์ ปาปัวนิวกีนี อินโดนีเซีย ไทย มาเลเซีย สิงคโปร์ มองโกเลียและปากีสถาน ผลจากรายงาน Hazy Perceptions ที่ศึกษาโดย Vital Strategies ยังเป็นข้อแนะนำให้กับผู้กำหนดนโยบาย ผู้สนับสนุน นักวิชาการและกลุ่มต่างๆ ที่สื่อสารกับผู้สื่อข่าวและสาธารณะชนในประเด็นอันตรายและแหล่งกำเนิดของมลพิษทางอากาศซึ่งเป็นปัจจัยหลักของความเจ็บป่วยรุนแรงและการเสียชีวิตจากโรคหัวใจและโรคปอด

ผลจาก Hazy Perceptions บอกอะไรเรา?

สาธารณชนมีความเข้าใจที่จำกัดถึงผลกระทบด้านสุขภาพในระยะยาวจากคุณภาพอากาศที่เลวร้าย

ส่วนใหญ่ ข่าวสารและโพสต์บนโซเชียลมีเดียเรื่องมลพิษทางอากาศจะกล่าวถึงปฏิกิริยาและเหตุการณ์ที่เกิดขึ้นในขณะนั้นและมีระยะสั้น – คนทั่วไปจะคุยถึงอาการเฉียบพลันจากมลพิษทางอากาศ เช่น ปัญหาการหายใจและตาระคายเคียง มากกว่าความเสี่ยงจากการรับสัมผัสซ้ำๆ ในระยะยาวซึ่งนำไปสู่ภัยคุกคามสุขภาพที่ร้ายแรง

หน่วยงานรัฐด้านสุขภาพไม่ใช่แหล่งข้อมูลที่มีอิทธิพลต่อการรับรู้ของประชาชนมากที่สุด

การศึกษาแสดงให้เห็นว่า ช่องทางเผยแพร่สื่อและข่าวสารและกลุ่มคนผู้มีอิทธิพลในการตัดสินใจของประชาชน (public influencers) ในเรื่องมลพิษทางอากาศนั้นมีความหลากหลายมาก อินฟลูเอนเซอร์สามอันดับต้นในช่วงเกือบสี่ปีของการวิเคราะห์โดย Vital Strategies รวมถึง นายกรัฐมนตรี(ในบางประเทศ) ช่างภาพ และกรีนพีซ โดยอินฟลูเอนเซอร์จะเปลี่ยนแปลงปีต่อปี แต่ที่ชัดเจนคือหน่วยงานแพทย์และสาธารณสุขไม่ใช่อินฟลูเอนเซอร์อันดับต้น

วาทกรรมสาธารณะ(Public discourse)ไม่ได้อยู่ที่ปัจจัยสำคัญที่สุดของมลพิษทางอากาศ

แหล่งกำเนิดมลพิษทางอากาศที่มีความสำคัญรองลงไป เช่น มลพิษจากยานยนต์ เป็นต้น ได้รับการพูดถึงมากกว่าแหล่งกำเนิดมลพิษทางอากาศที่มีความสำคัญมากกว่า เช่น โรงไฟฟ้าและการเผาขยะ

การพูดคุยถึงการแก้ปัญหาเน้นไปที่การป้องกันตนเอง เช่น การใช้หน้ากาก แต่ในช่วง 4 ปีที่ผ่านมามีการพูดคุยกันมากขึ้นถึงการหาทางออกในระยะยาว

แม้ประชาชนจะพูดถึงการป้องกันตนเอง เช่น การใช้หน้ากาก เป็นต้น โดยมีมากขึ้นในช่วงเหตุรุนแรงของมลพิษทางอากาศอย่างวิกฤตหมอกควันพิษในเอเชียตะวันออกเฉียงใต้ในปี พ.ศ. 2558 ขณะเดียวกัน การพูดคุยถึงทางออกระยะยาวโดยเฉพาะแหล่งพลังงานหมุนเวียนที่สะอาดนั้นเพิ่มขึ้นในช่วง 4 ปีที่ผ่านมา และสอดคล้องกับประเด็นสาธารณะเรื่องการเปลี่ยนแปลงสภาพภูมิอากาศ

คุณภาพอากาศที่แปรผันตามฤดูกาลพร้อมกับเนื้อหาที่แสดงความรู้สึกนั้นเป็นเรื่องที่เข้าถึงคนได้มากที่สุด

ความถี่ของมลพิษทางอากาศเป็นหัวข้อพูดคุยที่เปลี่ยนแปลงไปปีต่อปี โดยจะมีความถี่มากที่สุดในช่วงเกิดเหตุวิกฤต หรือมีข่าวใหญ่ หรือมีกิจกรรมสาธารณะที่โยงกับมลพิษทางอากาศ ที่เหลือจากนั้น ปริมาณเนื้อหาข่าวและโซเชียลมีเดียจะค่อนข้างต่ำ ถือเป็นความท้าทายเมื่อเราต้องการให้ประชาชนสนับสนุนให้เกิดมาตรการป้องกันมลพิษทางอากาศซึ่งเป็นมาตรการที่ต้องดำเนินการต่อเนื่องในระยะยาว

การโพสข้อความบนโซเชียลมีเดียและบทความข่าวเรื่องมลพิษทางอากาศที่กล่าวถึงการเปลี่ยนแปลงสภาพภูมิอากาศหรือผลกระทบสุขภาพที่มีต่อเด็กนั้นทำให้คนมีส่วนร่วมในการสนทนาได้มากกว่าเนื้อหาที่ไม่มีการพูดถึงเรื่องดังกล่าว

การวิเคราะห์ที่ทำขึ้นผ่านเนื้อหาข่าวและโซเชียลมีเดีย 530,000 ชิ้น ช่วงเดือนมกราคม พ.ศ.2558 ถึงเดือนตุลาคม พ.ศ.2561 ใน 11 ประเทศในเอเชียรวมถึงประเทศไทยนี้ ชี้ให้เห็นว่า นอกเหนือจากความจำเป็นที่จะต้องมียุทธศาสตร์ในการสื่อสารสาธารณะที่มีประสิทธิภาพโดยเน้นไปที่ผลกระทบระยะยาวของมลพิษทางอากาศโดยเฉพาะอย่างยิ่งในประชากรกลุ่มเสี่ยง การชี้ให้เห็นแหล่งกำเนิดหลักของมลพิษทางอากาศและความเชื่อมโยงกับสถานการณ์สิ่งแวดล้อมอื่นๆ โดยเฉพาะอย่างยิ่งการเปลี่ยนแปลงสภาพภูมิอากาศแล้ว รัฐบาลและผู้กำหนดนโยบายจะต้องดำเนินการป้องกันมลพิษทางอากาศโดยเน้นไปที่แหล่งกำเนิดหลักด้วย

ร่วมเป็นส่วนหนึ่งของการเคลื่อนไหวเพื่อ  #ขออากาศดีคืนมา #RightToCleanAir

8 ขั้นตอนในการกู้วิกฤตมลพิษพลาสติกในมหาสมุทร

ทะเลและมหาสมุทรให้ทุกสิ่งที่เราต้องการ : อาหาร ออกซิเจน แรงบันดาลใจและการงาน ทะเลและมหาสมุทรยังช่วยรักษาสมดุลของสภาพภูมิอากาศ แม้ว่าความสำคัญของมหาสมุทรที่มีต่อชีวิต มนุษย์ยังคงทำประหนึ่งทะเลและมหาสมุทรเป็นดังที่ระบายของเสีย ประมาณว่าทุกๆ นาที ขยะพลาสติกที่เท่ากับปริมาณที่บรรจุในรถบรรทุกขยะหนึ่งคันถูกทิ้งลงทะเล และเป็นความเร่งด่วนในการทำอะไรบางอย่างเพื่อแก้ปัญหา และเรามีเวลาไม่มากในการทำอะไรบางอย่างกับปัญหา ข่าวดีคือเรามีทางออกของปัญหา

มันน่าเศร้าแต่เป็นวันที่สำคัญเมื่อ วาฬ Cuvier’s beaked) ขึ้นเกยตื้นบนหาด Sotra ในนอร์เวย์โดยมีพลาสติก 30 ชิ้นอยู่ในท้องของมัน เราทั้งหลายที่ทำงานในประเด็นมหาสมุทรมาหลายปีต่างรับรู้ว่านี่ไม่ใช่เรื่องใหม่ นักวิจัยทำงานศึกษาเรื่องมลพิษพลาสติกในมหาสมุทรย้อนหลังไปถึงปี พ.ศ.2513 สำหรับหลายๆ คน ปี พ.ศ.2560 น่าจะเป็นช่วงเวลาที่รับรู้อย่างจริงจัง ปัญหาเรื่องพลาสติกมันใหญ่โตมากโดยที่เราสามารถเห็นได้บนชายหาด/ชายฝั่งทะเลทั่วทุกมุมโลก

ประมาณว่า ทุกๆ ปี พลาสติกราว 8 ล้านตันลงไปอยู่ในมหาสมุทร ผลิตภัณฑ์ซึ่งครึ่งหนึ่งได้รับการยกย่องว่าเป็นผลงานแห่งอัจริยะได้กลายมาเป็นปัญหาสิ่งแวดล้อมที่ขยายตัวเร็วที่สุดในโลก มันยากที่จะจินตนาการว่าขยะพลาสติก 8 ล้านตันมันมากแค่ไหน ถ้าจะให้เทียบ มันก็ประมาณกับนำหนักของประชากรทั้งหมดของประเทศสเปนและสพราชอาณาจักรรวมกัน ประมาณว่าตัวเลขนี้จะเพิ่มขึ้น 60 ตันต่อนาทีภายในปี พ.ศ.2593 หากแนวโน้มการใช้พลาสติกและการขาดการจัดการของเสียที่เพียงพอยังคงเป็นอยู่เช่นในปัจจุบัน

พลาสติกสร้างปัญหาใหญ่ต่อสัตว์ป่าและพรรณพืชและต่อมนุษย์ นกทะเล เต่าทะเล และสิ่งมีชีวิตในทะเลอื่นๆ เข้าไปติดอยู่ในถุงพลาสติก ติดอยู่ในเครื่องมือประมงที่ทิ้งไว้ไม่ใช้แล้ว และเสียชีวิตจากการกินพลาสติกเข้าไปในท้องของมัน พลาสติกหลุดเข้าห่วงโซ่อาหารและอาหารที่เรากิน และพบอยู่ในสายพันธุ์ปลาเกือบทุกชนิดที่มีการสำรวจ รวมถึงหอยและปู และนี่อาจเป็นเพียงการเร่ิมต้น พลาสติกเป็นปัญหาที่ยิ่งใหญ่ แต่เป็นปัญหาที่มีทางออก เป็นเรื่องเร่งด่วนที่ต้องลงมือเดี๋ยวนี้

8 ขั้นตอนที่เราสามารถทำได้

1. ลดการพึ่งพาพลาสติก

เราใช้พลาสติกใช้ครั้งเดียวทิ้งในปริมาณที่เหลือเชื่อ ทั้ง หลอดพลาสติก ถุงพลาสติก บรรจุภัณฑ์พลาสติก แก้วพลาสติก ถ้วย ชาม ช้อนและซ่อมพลาสติก เราต้องยุติการใช้พลาสติกใช้แล้วทิ้งเหล่านี้ ประเทศต่างๆ มากขึ้นได้นำเอามาตรการห้ามใช้ถุงพลาสติกและพลาสติกใช้แล้วทิ้ง หรือตั้งเป้าหมายที่เป็นรูปธรรมในการลดการใช้พลาสติกและของเสียพลาสติก ความพยายามดังกล่าวนี้ต้องถูกยกระดับเพิ่มมากขึ้น เพื่อให้การใช้พลาสติกในระดับโลกลดลง และพวกเราสามารถทำในส่วนของเราได้เพื่อปฏิเสธผลิตภัณฑ์เหล่านี้

2. ขยายความรับผิดชอบของผู้ผลิต

ในช่วง 50 ปีที่ผ่านมา การผลิตพลาสติกของโลกเพิ่มขึ้น 2 เท่า ผู้ผลิตพลาสติกชั้นนำวางแผนจะเพิ่มการผลิตอีกหนึ่งในสามในอีก 5 ปีข้างหน้า ในปี พ.ศ.2517 การใช้พลาสติกต่อหัวต่อปีอยู่ที่ 2 กิโลกรัม 2kg ปัจจุบันเพิ่มเป็น 43 กิโลกรัมต่อหัวต่อปี! โลกกำลังเดินไปผิดทิศทาง จำต้องมีการพัฒนาทางเลือกต่อพลาสติกที่ไม่อาจย่อยสลายได้ และจะต้องมีการพุ่งเป้าไปที่อุตสาหกรรมที่รับผิดชอบต่อขยะพลาสติกโดยข้อตกลงด้านอุตสาหกรรมที่เฉพาะเจาะจงและข้อตกลงว่าด้วยภาระรับผิดชอบของผู้ผลิตในการจัดการ เก็บจัดเก็บ และการนำมาใช้ใหม่

A member of Algeria's Under the Sea diving club collects plastic bottles.

3. เพิ่มค่าธรรมเนียมและภาษีให้กับพลาสติกที่เป็นมลพิษ

พลาสติกส่วนใหญ่ที่เราใช้ในปัจจุบันผลิตมาจากน้ำมันและเป็นทั้งแหล่งกำเนิดของก๊าซเรือนกระจกและมลพิษ ในนอรเวย์ มีพลาสติกเพียงร้อยละ 0.5 ที่ผลิตมาจากทรัพยากรที่หมุนเวียนกลับมาใช้ใหม่ได้ พลาสติกจากเชื้อเพลิงฟอสซิลยังคงถูกว่า รัฐบาลต่างๆ จำเป็นต้องดำเนินการเก็บภาษีหรือค่าธรรมเนียมพลาสติกที่เป็นมลพิษเหล่านี้ ค่าธรรมเนียมจำต้องมีการเปลี่ยนแปลงเพื่อทำให้พลาสติกที่สามารถนำกลับมาใช้ใหม่มีราคาถูกกว่า

4. ขยายการจัดการของเสียที่มีประสิทธิภาพ

พลาสติกส่วนใหญ่มาจากกลุ่มประเทศกำลังพัฒนา การขยายตัวของประชากรและชนชั้นกลางที่เพิ่มมากขึ้นทำให้การใช้พลาสติกเพิ่มได้รวดเร็วกว่าศักยภาพในการจัดการขยะพลาสติก พลาสติกจึงถูกทิ้งและออกสู่ทะเลในที่สุด  จีนและอินโดนีเซียเป็นประเทศที่มีส่วนทำให้เกิดขยะพลาสติกในทะเลมากที่สุด จำเป็นต้องมีโครงการในการจัดทำโครงสร้างพื้นฐานในการจัดการขยะพลาสติกและการรีไซเคิล

5. ผลักดันให้เกิดวิสัยทัศน์ขยะพลาสติกในทะเลเป็นศูนย์

ในเดือนธันวาคม พ.ศ. 2560 ที่ประชุมสหประชาชาติด้านสิ่งแวดล้อมยกร่างเป้าหมายระดับโลกเพื่อยุติการปล่อยทิ้งขยะพลาสติกลงทะเล ขั้นตอนต่อมาคือการจัดทำข้อตกลงนานาชาติที่มีเป้าหมายและกรอบเวลาที่ชัดเจนเพื่อรับรองว่าจะมีการจัดทำแผนที่ของแหล่งกำเนิดขยะทะเล ความรับผิดชอบทางการตลาดที่เพิ่มขึ้นเพื่อป้องกันการแพร่หลายของขยะพลาสติกในทะเล และเพิม่ความเข้มแข็งในการจัดการของเสียที่เป็นมิตรกับสิ่งแวดล้อมทั่วโลก

6. เพิ่มการวิจัย การติดตามตรวจสอบและแผนที่แหล่งกำเนิดขยะพลาสติก

ยังมีอีกมากที่เรายังไม่รู้เกี่ยวกับพลาสติก นักวิจัยคาดว่าร้อยละ 70 ของขยะพลาสติกลงไปอยู่ในพื้นใต้ทะเล เมื่อเวลาผ่านไป พลาสติกเหล่านี้แตกตัวเป็นชิ้นเล็กๆ แต่เรายังไม่รู้ว่าเกิดอะไรขึ้นกับพลาสติกจิ๋วเหล่านี้ หรือ เราจะกำจัดมันอย่างไร ความพยายามจะสร้างแผนที่และติดตามตรวจสอบ ตลอดจนการวิจัยถึงผลกระทบเชิงลบนั้นจะต้องถูกยกระดับขึ้น ดูข้อมูงเพิ่มเติมจาก การริเริ่ม นี้

7. ยุติการปล่อยทิ้งขยะพลาสติกลงสู่ทะเล

ประมาณร้อยละ 80 ของขยะพลาสติกในทะเลมาจากกิจกรรมต่างๆ และอุตสาหกรรมบนบก ทุกๆ อย่างตั้งแต่ยางรถยนต์ อุปกรณ์กีฬา เสื้อผ้า ไปจนถึงก้นบุหรี่และก้านสำลีเช็ดหู ทุกคนสามารถเป็นส่วนหนึ่งของการแก้ปัญหา ลดการใช้พลาสติกลงในชีวิตประจำวัน

8. ช่วยกันทำความสะอาดและฟื้นฟูแหล่งปนเปื้อนขยะพลาสติก

ปฏิบัติทำความสะอาดและฟื้นฟูพื้นที่และชายฝั่งทะเลที่เผชิญกับวิกฤตมลพิษ แม้ว่าจะเป็นกิจกรรมการแก้ปัญที่ปลายเหตุ ก็ยังมีความสำคัญในฐานะเป็นกิจกรรมที่กระตุ้นให้ผู้คนมารวมตัวกันในความพยายามยุติมลพิษพลาสติก

พ.ศ. 2561 คือปีที่ร้อนที่สุดอันดับสี่ ตามแนวโน้มระยะยาวของภาวะโลกร้อน

ธารา บัวคำศรี แปลเรียบเรียงจาก https://earthobservatory.nasa.gov/images/144510/2018-was-the-fourth-warmest-year-continuing-long-warming-trend

แผนที่แสดงถึงการเปลี่ยนแปลงอุณหภูมิเฉลี่ยผิวโลกในปี พ.ศ.2561 ไม่ได้เป็นการแสดงอุณหภูมิสัมบูรณ์ แต่เป็นการแสดงว่าภูมิภาคใดร้อนขึ้นหรือเย็นลงเทียบกับค่าเฉลี่ยปีฐานระหว่างปี ค.ศ.1951-1980

อุณหภูมิเฉลี่ยผิวโลกในปี พ.ศ.2561ร้อนที่สุดเป็นอันดับสี่นับตั้งแต่ปี พ.ศ.2423 เป็นต้นมา จากผลการวิเคราะห์ที่เป็นอิสระโดยองค์การนาซาและองค์การบริหารมหาสมุทรและบรรยากาศแห่งชาติ(NOAA).

นักวิทยาศาสตร์จาก Goddard Institute for Space Studies (GISS) ของนาซา ระบุว่าอุณหภูมิเฉลี่ยผิวโลกในปี พ.ศ.2561 ขยับขึ้นมาอยู่ที่ 0.83 องศาเซลเซียส(1.5 องศาฟาเรนไฮท์) เมื่อเทียบกับค่าเฉลี่ยในปี พ.ศ.2494 และ 2523 อุณหภูมิเฉลี่ยผิวโลกในปี พ.ศ.2561 ตามหลังปี พ.ศ. 2559, 2560, และ 2558. ในช่วง 5 ปีที่ผ่านมาถือเป็นช่วงปีที่ร้อนที่สุดตามที่มีการบันทึกเก็บข้อมูลในยุคสมัยใหม่ และในจำนวนปีที่ร้อนที่สุด 19 ปี มีจำนวน 18 ปีเกิดขึ้นตั้งแต่ปี พ.ศ. 2543

Gavin Schmidt ผู้อำนวยการ GISS กล่าวว่า “ปี พ.ศ.2561 เป็นปีที่ร้อนอย่างยิ่งอีกปีหนึ่งตามแนวโน้มระยะยาวของภาวะโลกร้อน” นับตั้งแต่ทศวรรษ 1880s อุณหภูมิเฉลี่ยผิวโลกเพิ่มขึ้น 1 องศาเซลเซียส การเพิ่มขึ้นนี้เป็นผลมาจากการปล่อยคาร์บอนไดออกไซด์และก๊าซเรือนกระจกออกสู่บรรยากาศเพิ่มมากขึ้นจากกิจกรรมของมนุษย์

แผนที่ด้านบนแสดงถึงการเปลี่ยนแปลงอุณหภูมิเฉลี่ยผิวโลกในปี พ.ศ.2561 ไม่ได้เป็นการแสดงอุณหภูมิสัมบูรณ์ แต่เป็นการแสดงว่าภูมิภาคใดร้อนขึ้นหรือเย็นลงเทียบกับค่าเฉลี่ยปีฐานระหว่างปี ค.ศ.1951-1980

ภาพแอนนิเมชั่นนี้แสดงวัฐจักรฤดูกาลของการเปลี่ยนแปลงอุณหภูมิผิวโลกในทุกๆ เดือนนับตั้งแต่ปี ค.ศ.1880 แต่ละเส้นแสดงให้เห็นว่าอุณหภูมิเฉลี่ยรายเดือนของโลกต่ำหรือสูงกว่าค่าเฉลี่ยระหว่างปี ค.ศ.1980-2015 คอลัมน์ด้านขวาแสดงรายการแต่ละปีเมื่ออุณหภูมิเฉลี่ยผิวโลกทำสถิติใหม่ ค่าความแตกต่างในแต่ละฤดูกาลได้มาจากแบบจำลอง MERRA-2(the Modern-Era Retrospective analysis for Research and Applications, version 2) ที่ดำเนินการโดยสำนักงานแบบจำลองโลกของนาซา

พลวัตรของสภาพอากาศมักส่งผลต่ออุณหภูมิในระดับภูมิภาค ดังนั้น ทุกๆ ส่วนของโลกจะไม่ได้มีการเพิ่มขึ้นของความร้อนในแบบเดียวกัน เช่น NOAA พบว่าอุณหภูมิเฉลี่ยรายปีในปี ค.ศ.2018 สำหรับพื้นที่ 48 รัฐของสหรัฐอเมริกานั้นร้อนขึ้นเป็นอันดับที่ 14

แนวโน้มของภาวะโลกร้อนจะมีมากที่สุดในเขตขั้วโลก โดยในปี พ.ศ.2561 เราได้เห็นการสูญเสียทะเลน้ำแข็งเพิ่มขึ้นอีก ภาวะโลกร้อนยังเร่งให้เกิดการสูญเสียมวลของพืดน้ำแข็งในกรีนแลนด์และแอนตาร์กติกาซึ่งจะทำให้ระดับน้ำทะเลเพิ่มขึ้น อุณหภูมิที่เพิ่มขึ้นยังนำไปสู่ฤดูกาลแห่งไฟที่ยาวนานขึ้นและเร่งให้เหตุการณ์สภาพภูมิอากาศสุดขั้วทบทวีขึ้น

Gavin Schmidt ผู้อำนวยการ GISS กล่าวเพิ่มเติมว่า “เราสามารถรับรู้ถึงผลกระทบของแนวโน้มระยะยาวของภาวะโลกร้อนแล้ว ดังจะเห็นได้จาก อุทกภัยตามแนวชายฝั่ง คลื่นความร้อน การตกของฝนที่รุนแรงขึ้น และการเปลี่ยนแปลงของระบบนิเวศ

ทีมนักวิทยาศาสตร์ที่ NOAA ใช้ข้อมูลดิบแบบเดียวกันกับที่ใช้โดยนาซา แต่เป็นช่วงปีฐานที่แตกต่างกันและมีการคาดการณ์ที่แตกต่างกันในเขตขั้วโลกและภูมิภาคที่มีข้อมูลไม่เพียงพอ การวิเคราะห์ของ NOAA พบว่าอุณหภูมิเฉลี่ยผิวโลกในปี พ.ศ.2561 เพิ่มขึ้น 0.79 องศาเซลเซียส(หรือ 1.42 องศาฟาเรนไฮต์) เมื่อเทียบกับค่าเฉลี่ยในช่วงศตวรรษที่ 20

กราฟเส้นด้านบนแสดงการเบี่ยงเบนของอุณหภูมิรายปี ระหว่าง ค.ศ.1880 ถึง ค.ศ.2018 (โดยอ้างอิงค่าเฉลี่ยระหว่างปี ค.ศ.1951-1980) ที่บันทึกโดยนาซา NOAA กรมอุตุนิยมวิทยาของญี่ปุ่น ทีมวิจัยของ Berkeley Earth และสำนักอุตุนิยมวิทยาแห่งสหราชอาณาจักร แม้ว่าจะมีความแตกต่างกันอยู่บ้างในแต่ละปี การบันทึกข้อมูลของ 5 สำนักนี้แสดงถึงการขึ้นลงของอุณหภูมิที่สอดคล้องกัน ทั้งหมดแสดงให้เห็นถึงภาวะโลกร้อนที่เร่งขึ้นในช่วงสองสามทศวรรษที่ผ่านมาและระบุตรงกันว่าทศวรรษล่าสุดนั้นร้อนที่สุด

การวิเคราะห์ของนาซารวมเอาการวัดอุณหภูมิพื้นผิวโลกจากสถานีตรวจวัดอากาศ เครื่องตรวจวัดอุณหภูมิผิวทะเลจากทุ่นในทะเลและเรือ ตลอดจนสถานวิจัยที่แอนตาร์กติกรวม 6,300 จุด ข้อมูลนำไปวิเคราะห์โดยใช้อัลกอริทึมที่พิจารณาความแตกต่างของสถานีตรวจวัดอุณหภูมิทั่วโลก ปรากฏการณ์เกาะความร้อนในเมืองที่อาจส่งผลต่อข้อสรุปจากการวิเคราะห์ การคำนวณเหล่านี้ออกมาเป็นความแตกต่างของอุณหภูมิเฉลี่ยผิวโลกโดยเทียบปีฐาน ค.ศ.1951-1980

เนื่องจากตำแหน่งที่ตั้งและแนวปฏิบัติในการตรวจวัดของสถานีแต่ละแห่งเปลี่ยนแปลงไปตามเวลา จึงมีความไม่แน่นอนในการแปรผลความแตกต่างของอุณหภูมิเฉลี่ยผิวโลกแบบปีต่อปี ด้วยเหตุนี้ นาซาประมาณว่า การเปลี่ยนแปลงของอุณหภูมิเฉลี่ยผิวโลกจะอยู่ที่ประมาณ 0.1 องศาฟาเรนไฮต์ ภายในช่วงความเชื่อมั่นร้อยละ 95

ชุดข้อมูลและระเบียบวิธีวิจัยในรายละเอียดค้นหาเพิ่มเติมได้ ที่นี่

NASA Earth Observatory images by Joshua Stevens, based on data from the NASA Goddard Institute for Space Studies, and additional data from the NOAA National Centers for Environmental InformationMet Office Hadley CentreJapanese Meteorological Agency, and Berkeley Earth. Story by Ellen Gray, NASA Earth Science News Team, and Michael Carlowicz.

แหล่งข้อมูลอ้างอิงและอ่านเพิ่มเติม