ส่องมาตรการของภาครัฐในวันที่ฝุ่น PM2.5 ถล่มเมือง (อีกครั้ง)

หลังจากฤดูกาลฝุ่นช่วงต้นปี 2562 ในหลายพื้นที่ของประเทศได้ผ่านพ้นไปท่ามกลางคำถามของสาธารณะชนต่อมาตรการรับมือของหน่วยงานที่รับผิดชอบ ช่วงเดือนกันยายน 2562 ที่ผ่านมามลพิษทางอากาศจากหมอกควันข้ามพรมแดนในสุมาตราและกาลิมันตันของอินโดนีเซียส่งผลให้คุณภาพอากาศรวมถึง PM2.5 อยู่ในระดับที่ส่งผลกระทบต่อสุขภาพต่อประชาชนหลายจังหวัดทางภาคใต้ ลมตะวันออกได้พัดพามวลอากาศสะอาดจากอ่าวไทยเข้าสู่พื้นที่ภาคใต้ ส่งผลให้ความเข้มข้น PM2.5 ลดลงอย่างต่อเนื่องในช่วงสัปดาห์ที่ผ่านมา ในขณะที่อิทธิพลความกดอากาศสูงจากจีนก็ได้ส่งผลให้ความเข้มข้น PM2.5 ในหลายพื้นที่ของภาคกลางโดยเฉพาะกรุงเทพมหานครเพิ่มสูงขึ้นในระดับที่เป็นอันตรายต่อสุขภาพ

เราอาจจะได้รับคำอธิบายแบบเดิมๆ จากหน่วยงานรัฐว่า ปัจจัยทางอุตุนิยมวิทยา(อุณหภูมิ ความเร็ว/ทิศทางลม ความกดอากาศ ความชื้นสัมพัทธ์ ฯลฯ) มีอิทธิพลต่อคุณภาพอากาศและในที่สุดก็อาจใช้เป็นข้ออ้างว่า “เดี๋ยวคุณภาพอากาศก็น่าจะดีขึ้น” และความเป็นจริงที่ใช้เป็นข้ออ้างนี้เองที่ทำให้มาตรการต่างๆ และการควบคุมมลพิษทางอากาศและฝุ่น PM2.5 จากแหล่งกำเนิด อยู่แต่บนกระดาษและในห้องประชุม

ในการส่องมาตรการของรัฐในวันที่ฝุ่น PM2.5 มาเยือนอีกครั้งหนึ่ง เราจะพิจารณาจาก “รายงานสถานการณ์ฝุ่นละอองขนาดเล็กกว่า 2.5 ไมครอน (PM2.5) พื้นที่กรุงเทพมหานครและปริมณฑลและผลการดําเนินงานของกรมควบคุมมลพิษในปี พ.ศ.2562

การติดตามตรวจสอบปริมาณฝุ่น PM2.5 และการดำเนินงานของกรมควบคุมมลพิษ

กรมควบคุมมลพิษได้เฝ้าระวัง ติดตามและวิเคราะห์ข้อมูลสถานการณ์ฝุ่น PM2.5 พื้นที่กรุงเทพมหานครและปริมณฑลที่มักพบเกินมาตรฐานเฉลี่ย 24 ชั่วโมงที่ 50 ไมโครกรัมต่อลูกบาศก์เมตรระหว่างเดือนธันวาคม – เมษายน ของทุกปี โดยมีสถานีตรวจวัด PM2.5 ในพื้นที่กรุงเทพมหานครและปริมณฑลทั้งหมด 19 สถานี ดังรูป

จุดตรวจวัด PM2.5 ของกรมควบคุมมลพิษในกรุงเทพมหานครและปริมณฑล

กรมควบคุมมลพิษระบุว่า ทำการรายงานข้อมูลสถานการณ์ PM2.5 ในช่วงเดือนธันวาคม–เมษายน) จากสถานีตรวจวัดคุณภาพอากาศของกรมควบคุมมลพิษและสถานีตรวจวัดคุณภาพอากาศของกรุงเทพมหานคร เพื่อเฝ้าระวังและแจ้งเตือนให้หน่วยงานที่เกี่ยวข้องและประชาชนรับทราบข้อมูลในรูปแบบที่เข้าใจง่าย สะดวกและทันต่อสถานการณ์ผ่านช่องทางเว็บไซต Air4Thai และเฟซบุคแฟนเพจกรมควบคุมมลพิษเป็นประจําทุกวัน นอกจากนี้ยังใช้ข้อมูลดังกล่าวเพื่อแจงเตือนหน่วยงานที่มีหน้าที่เกี่ยวข้องกับการดําเนินมาตรการในการลดฝุ่น PM2.5 และการเฝ้าระวังและป้องกันผลกระทบต่อสุขภาพของประชาชนทั่วไปและประชาชนกลุ่มเสี่ยงตามสถานการณ์ PM2.5 อย่างต่อเนื่อง

กรมควบคุมมลพิษยังได้ใช้แบบจําลองทางคณิตศาสตร์พยากรณ์สถานการณ์ฝุ่น PM2.5 ล่วงหน้า 1 วัน ใน 11 พื้นที่ ซึ่งผลการพยากรณ์รายงานอยู่ในรายงานสถานการณ์ประจําวัน ในปี พ.ศ.2563 กรมควบคุมมลพิษจะพยากรณสถานการณ์ฝุ่นละออง PM2.5 ครอบคลุมพื้นที่กรุงเทพมหานครและปริมณฑล

ระหว่างเดือนพฤศจิกายน 2561-เดือนพฤษภาคม 2562 มีการประชุมของกรมควบคุมมลพิษและหน่วยงานต่างๆ ที่เกี่ยวข้องเพื่อแก้ไขปัญหาฝุ่นละออง PM2.5 ในพื้นที่กรุงเทพมหานครและปริมณฑลทั้งหมด 16 ครั้ง โดยมุ่งขับเคลื่อนวาระแห่งชาติ “การแก้ไขปัญหามลพิษด้านฝุ่นละออง” อย่างเป็นรูปธรรมภายในเดือนตุลาคม จากนั้นจะมีการประชุมมอบนโยบาย/แนวทางการป้องกันและแก้ไขปัญหาฝุ่น PM2.5 ในเดือนพฤศจิกายน 2562

ข้อคิดเห็นของกรีนพีซ

ขยายเครือข่ายสถานีตรวจวัด PM2.5 รายงานคุณภาพอากาศตามเวลาจริงรายชั่วโมงและใช้ฐานข้อมูลคาดการณ์คุณภาพอากาศในอีก 5-7 วันล่วงหน้า

ขอบเขตของอันตรายด้านสุขภาพจากมลพิษทางอากาศโดยเฉพาะ PM2.5 ในประเทศไทย ส่งผลให้มีความต้องการเร่งด่วนในการเข้าถึงข้อมูลคุณภาพอากาศแบบทันท่วงทีมากขึ้นเพื่อที่ประชาชนและชุมชนจะสามารถตัดสินใจบนพื้นฐานข้อมูลดังกล่าวและมีมาตรการระยะสั้นในการปกป้องสุขภาพของตนได้

เราเห็นได้ชัดเจนว่า การรายงานข้อมูลสถานการณ์ PM2.5 จากสถานีตรวจวัดคุณภาพอากาศของกรมควบคุมมลพิษในเขตกรุงเทพฯและปริมณฑล(ซึ่งครอบคลุมเนื้อที่ราว 7,761 ตารางกิโลเมตร) จำนวน 19 จุดนั้นไม่เพียงพออย่างยิ่ง แม้ว่าจะมีการใช้แบบจำลองทางคณิตศาสตร์เพื่อพยากรณ์สถานการณ์ PM2.5 ล่วงหน้า 1 วัน เพื่ออุดช่องว่าง แต่ข้อมูลในรายงานสถานการณ์ประจำวันที่รวมการพยากรณ์ก็ยากที่จะเข้าถึงอยู่ดี

ส่วนสถานีตรวจวัดคุณภาพอากาศของกรุงเทพมหานครที่มีกระจายอยู่ทุกเขตนั้นจะรายงานผ่านเว็บไซต์ http://bangkokairquality.com/bma/ ที่แยกต่างหากจากแพลทฟอร์มของกรมควบคุมมลพิษ แม้ว่ากรมควบคุมมลพิษจะนำข้อมูลมารายงานรวมกัน แต่ก็ไม่ได้ผนวกอยู่บนแอพพลิเคชั่น Air4Thai สร้างความลักลั่นในการสื่อสารมากขึ้นไปอีก

นอกเหนือจากความจำเป็นที่จะต้องเพิ่มสถานีตรวจวัดคุณภาพอากาศราคาสูงของหน่วยงานภาครัฐ การสร้างข้อมูลสาธารณะโดยเครื่องตรวจวัดคุณภาพอากาศราคาต่ำเป็นอีกทางเลือกหนึ่งของเมืองและชุมชนเพื่อเร่งการเข้าถึงข้อมูลคุณภาพอากาศตามเวลาจริงและเป็นข้อมูลของพื้นที่นั้นๆ จนถึงปัจจุบัน ยังไม่เห็นการสนับสนุนอย่างเป็นรูปธรรมจากภาครัฐในเรื่องนี้ เราจึงได้เห็นเครือข่ายนักวิชาการริเริ่มนวัตกรรม เช่น Dust Boy ขึ้นเอง ส่วนประชาชนก็ต้องซื้อหาเครื่องมือมาติดตั้งโดยไม่รอภาครัฐ

เครือข่ายการตรวจวัด PM2.5 โดยใช้เครื่องมือขนาดเล็กที่ริเริ่มโดยประชาชนและกลุ่มต่างๆ ในกรุงเทพมหานครและปริมณฑล

กรีนพีซยืนยันว่าการเข้าถึงข้อมูลคุณภาพอากาศตามเวลาจริง(รายชั่วโมง)เป็นแนวทางหน่ึงท่ีมี ประสิทธิภาพในการปรับปรุงคุณภาพอากาศ การรายงานคุณภาพอากาศที่ทันท่วงทีจะขยายการรับรู้ในทางสาธารณะเพื่อขับเคลื่อนการลงมือปกป้องสุขภาพ

ความก้าวหน้าในการควบคุมและลดมลพิษทางอากาศของจีนหลังจากดําเนินการตรวจวัดคุณภาพอากาศของประเทศคือตัวอย่างที่แสดงให้เห็นว่าการเข้าถึงข้อมูลคุณภาพภาพอากาศตามเวลาจริงก่อให้เกิดผลกระทบเชิงบวกต่อการกำหนดนโยบายและการจัดการคุณภาพอากาศของประเทศ

ปัจจุบัน จีนเป็นประเทศหนึ่งที่มีโครงการตรวจวัดคุณภาพอากาศท่ีเข้มข้นที่สุดและเป็นผู้นำในการยกระดับการจัดการคุณภาพอากาศในเมืองหลักต่างๆ อ่านเพิ่มเติมจากรายงานสถานะคุณภาพอากาศกรุงปักกิ่ง ปี พ.ศ.2553-สิงหาคม 2563

วาระแห่งชาติ-มาตรฐานคุณภาพอากาศ PM2.5 ต้องเข้มงวดขึ้น

องค์การอนามัยโลก (WHO, 2011) ระบุว่าไม่มีหลักฐานท่ีชี้ว่ามีระดับฝุ่นละอองท่ีปลอดภัยหรือระดับฝุ่นละอองท่ีไม่แสดงผลเสียต่อสุขภาพอนามัย (There is no evidence of a safe level of exposure or a threshold below which no adverse health effects occur) ดังน้ัน จึงเป็นภาระกิจชองหน่วยงานรัฐทั้งในด้านสุขภาพอนามัยและหน่วยงานด้านควบคุมแหล่งกำเนิดจะต้องพยายามปรับปรุงมาตรฐานคุณภาพอากาศให้เข้มงวดข้ึนในระยะยาว

มาตรฐานคุณภาพอากาศในบรรยากาศของประเทศไทยมีรูปแบบเดิมตามท่ีใช้ในปี พ.ศ. 2524 ซึ่งแตกต่างจากมาตรฐานนานาประเทศท่ีได้มีการพัฒนามาโดยตลอด และเป็นสาเหตุหนึ่งที่ทำให้มาตรฐานแตกต่างกันออกไป

มาตรฐานฝุ่นละอองในบรรยากาศประกอบด้วยมาตรฐานระยะสั้น (24 ชั่วโมง) และระยะยาว (1 ปี) ความแตกต่างของรูปแบบมาตรฐานอยู่ที่มาตรฐานระยะสั้นสำหรับประเทศไทยจะกำหนดค่าสูงสุดท่ีระดับฝุ่นละอองต้องไม่เกินแม้แต่วันเดียวในรอบปี มีข้อเสนอให้ปรับมาตรฐานฝุ่น PM10 และ PM2.5 ของประเทศไทยให้เป็นรูปแบบเปอร์เซ็นต์ไทล์ท่ี 95 กล่าวคือ ยอมให้มีจำนวนวันท่ีเกินมาตรฐานได้ร้อยละ 5 ใน 365 วัน (หรือเท่ากับ 18 วันในรอบปี)

การใช้รูปแบบมาตรฐานแบบเปอร์เซ็นต์ ไทล์มีความเหมาะสมกับพลวัตรของคุณภาพอากาศ การที่ความเข้มข้นสูงสุดของ PM2.5 มีความแปรปรวนสูงอาจได้รับอิทธิพลจากสภาพอุตุนิยมวิทยาท่ีเลวร้ายในเวลาสั้นๆ หรือมีแหล่งกำเนิดมลพิษที่มากผิดปกติในพื้นท่ีหรือพัดพาจากพื้นที่อื่นในวันน้ัน เมื่อพบว่าค่าเกินมาตรฐานแบบเปอร์เซ็นต์ไทล์ จะเป็นส่ิงบอกเตือนหน่วยงานว่าต้องมีมาตรการระยะสั้นในการควบคุมมลพิษอากาศจากแหล่งกำเนิดไม่ให้เกินจำนวนวันที่เกินค่ามาตรฐานที่ยอมได้

ด้วยเหตุนี้เอง จะต้องปรับตัวเลขความเข้มข้นของ PM2.5 ให้เป็น 35 ไมโครกรัมต่อลูกบาศก์เมตร และเพื่อนำไปสู่มาตรการที่เข้มงวดในการลดการปล่อย PM2.5 จากแหล่งกำเนิด ค่าเฉลี่ย PM2.5 รายปีจะต้องปรับให้เป็น 12 ไมโครกรัมต่อลูกบาศก์เมตร นี่คือการปฏิบัติที่เป็นรูปธรรมประการหนึ่ง หากรัฐบาลจะต้องขับเคลื่อนวาระแห่งชาติในการป้องกันและแก้ไขปัญหาฝุ่น PM2.5 ในเดือนพฤศจิกายนและธันวาคม พ.ศ.2562 นี้

คุณสามารถเป็นส่วนหนึ่งของ #RightToCleanAir #ขออากาศดีคืนมา โดยร่วมผลักดันคณะกรรมการสิ่งแวดล้อมแห่งชาติให้กำหนดมาตรฐาน PM2.5 ในบรรยากาศทั่วไป(ambient air standard)ขึ้นใหม่โดยมีค่าเฉลี่ยรายปี 12 ไมโครกรัมต่อลูกบาศก์เมตร และค่าเฉลี่ย 24 ชั่วโมงเป็น 35 ไมโครกรัมต่อลูกบาศก์เมตร ภายในปี พ.ศ.2562

ควันไฟป่าพรุปกคลุมบอร์เนียว ก่อวิกฤตสภาพภูมิอากาศ มลพิษทางอากาศและผลกระทบสุขภาพ

September 14, 2019

หลังจากช่วงต้นฤดูกาลไฟอันเงียบงันในอินโดนีเซีย การขยายตัวของจุดเกิดไฟในกาลิมันตันและสุมาตราในช่วงเดือนกันยายน 2562 นี้ ก่อให้เกิดควันพิษหนาทึบจากการเผาไหม้ป่าพรุครอบคลุมไปทั่วทั้งภูมิภาค จากรายงานข่าว โรงเรียนหลายแห่งต้องปิดและหยุดการเรียน สานามบินหลายแห่งต้องยกเลิก เปลี่ยนเส้นทางและเลื่อนเที่ยวบินจากการที่หมอกควันไฟป่าขยายปกคลุมทั้งบอร์เนียวและสุมาตรา

ภาพจากเครื่องมือ MODIS(The Moderate Resolution Imaging Spectroradiometer) บนดาวเทียม Aqua ของนาซา จับภาพเกาะบอร์เนียวในวันที่ 15 กันยายน 2562 ควันไฟป่าทำให้คุณภาพอากาศเลวร้ายมากขึ้นจนต้องมีการประกาศเตือนประชาชนถึงผลกระทบที่จะเกิดขึ้นต่อสุขภาพ จุดเกิดไฟจำนวนมากเกิดขึ้นในกาลิมันตันซึ่งมีพื้นที่มหาศาลเป็นดินป่าพรุ ดาวเทียม/ดูบันทึกภาพหลักฐานการเกิดไฟป่าพรุตลอดช่วงเดือนสิงหาคมที่ผ่านมา แต่จำนวนและความเข้มข้นของไฟป่าพรุขยายเพิ่มขึ้นในช่วงสัปดาห์แรกของเดือนกันยายน

ฤดูกาลไฟในกาลิมันตันและสุมาตราเกิดขึ้นเป็นประจำทุกปีในช่วงเดือนกันยายนและตุลาคมเนื่องจากมีการเผาเศษวัสดุเหลือใช้ทางการเกษตรและเศษเหลือจากการทำไม้เพื่อแผ้วถางพื้นที่เพาะปลูกและเลี้ยงสัตว์ ในกาลิมันตัน ส่วนใหญ่จะเป็นการเตรียมพื้นที่เพื่อปลูกปาล์มน้ำมันและไม้โตเร็วสำหรับเยื่อกระดาษ เครื่องมือ The Operational Land Imager (OLI) บนดาวเทียม Landsat 8 จับภาพด้านล่าง แสดงให้เห็นไฟที่กำลังไหม้ในพื้นที่อุตสาหกรรมปาล์มทางตอนใต้ของบอร์เนียว

September 15, 2019

แผนที่ด้านล่างแสดงข้อมูลคาร์บอนอินทรีย์ในวันที่ 17 กันยายน 2652 ที่ทำขึ้นจากแบบจำลอง GEOS forward processing (GEOS-FP) ซึ่งประมวลผลจากข้อมูลภาพถ่ายดาวเทียม ภาพถ่ายทางอากาศและการสังเกตการณ์ภาคพื้นดิน ในการประมวลผลเพื่อหาคาร์บอนอินทรีย์ นักสร้างแบบจำลองใช้ข้อมูลละอองลอยและการเกิดไฟ แบบจำลอง GEOS forward processing (GEOS-FP) ยังใช้ข้อมูลอุณหภูมิอากาศ ความชื้นและลมเพื่อคาดการณ์พฤติกรรมของแนวควันไฟ ในกรณีนี้ ควันไฟจะกระจายตัวลอยอยู่ใกล้จุดเกิดไฟเนื่องจากกระแสลมอ่อน

แบบจำลอง GEOS forward processing (GEOS-FP) ก็มีลักษณะเดียวกับแบบจำลองสภาพภูมิอากาศ คือการใช้สมการทางคณิตศาสตร์แสดงกระบวนการทางกายภาพเพื่อคำนวณหาว่าเกิดอะไรขึ้นบรรยากาศ แบบจำลอง GEOS forward processing (GEOS-FP) คำนวณตำแหน่งและความเข้มข้นของแนวควันไฟคาร์บอนอินทรีย์ทุกๆ 5 นาที แบบจำลองได้ดึงข้อมูลละอองลอยใหม่ทุกช่วง 3 ชั่วโมง ข้อมูลอุตุนิยมวิทยาใหม่ทุกๆ 10 ชั่วโมง และข้อมูลการเกิดไฟใหม่ทุกๆ วัน

แผนที่ดินพรุได้มาจาก the Center for International Forestry Research’s Borneo Atlas ที่ระบุจุดเกิดไฟในพื้นที่ที่มีดินพรุ ไฟป่าพรุยากที่จะดับ และมีการเผาไหม้อยู่ใต้ดินเป็นเวลาหลายเดือนจนกว่าฤดูฝนจะมาถึง

September 17, 2019

ไฟป่าพรุปล่อยก๊าซและอนุภาคต่างๆ ออกมาจำนวนมาก รวมถึงคาร์บอนไดออกไซด์ มีเทน และ PM2.5 คาร์บอนไดออกไซด์และมีเทนเป็นก๊าซเรือนกระจกตัวสำคัญที่ก่อวิกฤตสภาพภูมิอากาศ PM2.5 เป็นส่วนผสมของฝุ่นจิ๋วที่ส่งผลร้ายต่อสุขภาพ

PM2.5 เป็นอนุภาคชนิดหนึ่งของละอองลอยที่เรียกว่าคาร์บอนอินทรีย์(organic carbon) และคาร์บอนดำ(black carbon) ที่เป็นอันตรายเนื่องจากขนาดที่เล็กมากของมันที่ทะลุทะลวงเข้าปอดและเส้นเลือด การวิจัยด้านสุขภาพเชื่อมโยง black carbon เข้ากับโรคทางเดินหายใจ โรคหัวใจและการเสียชีวิตก่อนวัยอันควร หลักฐานยังระบุถึงความเป็นพิษของละอองลอยที่เป็น organic carbon อีกด้วย แม้ว่าการศึกษาถึงผลกระทบสุขภาพ

Robert Field นักวิทยาศาสตร์แห่ง NASA Goddard Institute for Space Studies ผู้ทำการศึกษาเรื่องไฟป่าพรุในอินโดนีเซียเพื่อทำความเข้าใจถึงตัวแปรทางอุตุนิยมวิทยาที่มีต่อการเกิดไฟป่า กล่าวว่าเหตุการณ์ครั้งนี้อาจเทียบเคียงได้กับวิกฤติไฟป่าพรุในปี 2558” งานของเขารวมถึงการผสามผสานการวัดแบบแผนการตกของฝนด้วยดาวเทียมเข้าไปในระบบการติดตามและเตือนภัยจากไฟป่าที่ใช้โดยกรมอุตุนิยมวิทยา สภาพภูมิอากาศและธรณีกายภาพของอินโดนีเซีย

Robert Field เพิ่มเติมว่าจุดเกิดไฟจากระบบ MODIS และ VIIRS ไม่สูงมากเมื่อเทียบกับปี 2558 เพราะว่าไฟป่าพรุเกิดช้ากว่า แต่การเพิ่มขึ้นของจุดเกิดไฟแบวันต่อวันสามารถเทียบเคียงได้กับปี 2558 อย่างไรก็ตาม ต้องไม่ลืมว่า ไฟป่าพรุเหล่านี้เผาไหม้อยู่ใต้ดิน และบางพื้นที่มีควันหนาทึบซึ่งเครื่องมือวัดบนดาวเทียมไม่สามารถตรวจจับได้

Robert Field เห็นว่า ในช่วงการเกิดไฟป่าพรุครั้งใหญ่สองครั้งในอินโดนีเซีย ปี 2540 และ 2558 สภาวะความแห้งแล้งจากปรากฏการณ์เอลนีโญเป็นปัจจัยสำคัญที่ทำให้ไฟป่าพรุขยายวงกว้างเป็นวิกฤติ ในปี 2562 นี้ ปรากฎการณ์เอลนิโญเป็นกลาง แต่การเปลี่ยนแปลงของอุณหภูมิผิวน้ำทะเลที่เรียกว่า Indian Ocean Dipole น่าจะเป็นส่วนหนึ่งของการเกิดความแห้งแล้งในปีนี้

อ้างอิง

NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey, GEOS-5 data from the Global Modeling and Assimilation Office at NASA GSFC, and MODIS data from NASA EOSDIS/LANCE and GIBS/Worldview. Story by Adam Voiland.

หมอกควันเข้าปกคลุมเซาเปาลู(São Paulo) เมืองที่ใหญ่ที่สุดในซีกโลกตะวันตกให้อยู่ในความมืดมิดในเวลากลางวัน

ควันที่ลอยมาจากแหล่งกำเนิดหลายร้อยไมล์เข้าปกคลุมให้เมืองเซาเปาลูนกอยู่ในความมืดในช่วงกลางวัน (Courtesy of Leandro Mota)

ในช่วงกลางวันแสกๆ ท้องฟ้ากลับกลายเป็นสีดำในทันที กลางวันกลายเป็นกลางคืนในเซาเปาลู

แน่นอน หมอกควันคือข่าวร้ายในเมืองที่ใหญ่ที่สุดในซีกโลกตะวันตกโดยที่มีรถยนต์ติดยาวหลายไมล์บนท้องถนน

ผู้เชี่ยวชาญพยายามหาว่าเหตุกลางวันมืดในวันจันทร์(19 สิงหาคม 2562) เกิดจากอะไร แต่ข้อสรุปของพวกเขาในเวลานั้นกลับย้อนแย้งกัน สถาบันอุตุนิยมวิทยาแห่งชาติระบุว่า เมืองเซาเปาลูซึ่งตั้งอยู่ที่ระดับความสูง 2,500 ฟุต นั้นตก”อยู่ในเมฆหมอก” ส่วนสำนักอื่นๆ บอกว่ามันเป็นแนวอากาศเย็น บริษัท MetSul ซึ่งเชี่ยวชาญด้านอุตุนิยมวิทยาบอกว่า ตัวการคือหมอกควันที่มาจากไฟป่าในโบลิเวีย ปารากวัยและที่อันห่างไกลของบราซิล

ที่จริง ดูเหมือนมาจากปัจจัยสามอย่างนี้รวมกัน เมฆหมอก ควันและแนวอากาศเย็น ที่ทำให้เกิดการเคลื่อนตัวของควันจากจุดกำเนิดในระยะไกล เข้าปกคลุมเมืองจนมืดมิดในเวลากลางวัน

Josélia Pegorim นักอุตุนิยมวิทยาจาก Climatempo ให้สัมภาษณ์ กับ Globo ว่า “หมอกควันไม่ได้มาจากไฟในรัฐเซาเปาลู แต่มาจากควันไฟป่าที่หนาทึบที่เกิดขึ้นเมื่อหลายวันก่อนในเขตรัฐรอนโดเนีย(ของบราซิล)และโบลิเวีย มวลอากาศเย็นเปลี่ยนทิศทางและกระแสลมนั้นได้พาหมอกควันมายังเซาเปาลู

ข่าวสารต่างๆ รายงานถึงจำนวนการเกิดไฟในบราซิล โดยเพิ่มขึ้นถึงร้อยละ 80 ในปี พ.ศ.2562 นี้ โดยเฉพาะข้อมูลที่ปล่อยออกมาจากสถาบันแห่งชาติว่าด้วยการวิจัยอวกาศ (the National Institute for Space Research หรือ INPE) ในช่วงสัปดาห์

Alberto Setzer นักวิจัยที่ INPE ให้สัมภาษณ์ กับสื่อท้องถิ่นว่า “พื้นที่แอมะซอนส่วนใหญ่นั้นครั้งหนึ่งเป็นพื้นที่ทนไฟ แต่การเปลี่ยนแปลงสภาพภูมิอากาศและการทำลายป่าสร้างโลกใหม่ขึ้น ไฟป่าเพิ่มความถี่และความเข้มข้นขึ้น จากงานวิจัยต่างๆ ที่มีการศึกษาและนำเสนอไว้”

นักวิจัยชาวอังกฤษเขียน ลงใน the Conversation ปีนี้ ระบุว่า “ไฟป่าในแอมะซอนไม่ได้เกิดขึ้นตามธรรมชาติ สาเหตุมาจากความแห้งแล้งและกิจกรรมของมนุษย์รวมกัน ทั้งวิกฤตโลกร้อนและการทำลายป่า นั้นเชื่อมโยงกัน นำไปสู่การเพิ่มขึ้นของความถี่และความเข้มข้นของความแห้งแล้งในพื้นที่แอมะซอน”

นักวิจัยเชื่อว่าหมอกควันที่ปกคลุมเมืองเซาเปาลูจนมืดมิดในเวลากลางวันของวันจันทร์ที่ 19 สิงหาคมเดินทางมาไกลหลายร้อยกิโลเมตร (Courtesy of Juliana Muncinelli.)

แปลเรียบเรียงจาก Terrence McCoy ใน https://www.washingtonpost.com/world/2019/08/20/sudden-darkness-befalls-sao-paulo-western-hemispheres-largest-city-baffling-thousands/?arc404=true

วิวล้านไมล์ของหมอกควันไฟป่าในแคนาดา

May 30, 2019

หมอกควันจากไฟป่าขนาดใหญ่ในพื้นที่ต่างๆของแคนาดานั้นมีความหนาทึบและแผ่กระจายกว้างออกไปโดยสามารถเห็นได้ชัดเจนในระยะ 1.5 ล้านกิโลเมตร(1 ล้านไมล์) จากผิวโลก ภาพจากกล้อง Earth Polychromatic Imaging Camera (EPIC) บนดาวเทียม DSCOVR ของ NOAA จับภาพนี้ไว้ได้เมื่อวันที่ 30 พฤษภาคม 2562 เมื่อกระแสหมอกควันกระจายออกไปทางตะวันออกทั่วทั้งรัฐอัลเบอร์ตา รัฐซัสแคตเชวัน และรัฐแมนิโทบา

แหล่งกำเนิดที่ใหญ่ที่สุดของหมอกควันคือไฟป่าที่ Chuckegg Creek ซึ่งเกิดไฟมาตั้งแต่วันที่ 12 พฤษภาคม 2562 กระแสลมแรงและสภาวะแห้งแล้งทำให้ไฟป่าขยายตัวในวันที่ 29 พฤษภาคม ทางการแคนาดาต้องออก คำสั่งอพยพ ประชาชนราว 1 หมื่นคน ในวันที่ 31 พฤษภาคม รัฐบาลท้องถิ่น ระบุว่า ยังไม่สามารถควบคุมไฟป่าอีกเก้าพื้นที่ ไฟป่าใน 5 พื้นที่อยู่ในการควบคุม(ไม่ขยายวงกว้างออกไปจากที่เป็นอยู่) และอีก 10 พื้นที่ สามารถจัดการได้แล้ว

การเกิดไฟที่เข้มข้นทำให้เกิด เมฆ pyrocumulus ซึ่งพาหมอกควันไฟป่ายกตัวลอยขึ้นไปในบรรยากาศระดับสูงที่ซึ่งมีกระแสลมแรงและเคลื่อนย้ายให้หมอกควันกระจายในระยะทางไกล ข้อแนะนำเรื่องคุณภาพอากาศฉบับพิเศษ ของหน่วยงานสิ่งแวดล้อมแคนาดา(Environment Canada) ในวันที่ 31 พฤษภาคม ระบุว่าประชาชนที่อาศัยทางตอนเหนือ ตอนกลางและตอนใต้ของรัฐอัลเบอร์ตาต้องเจอกับอากาศแย่และทัศนวิสัยที่เลวร้าย นำไปสู่อาการเจ็บป่วย เช่น ไอจาม เจ็บคอ ปวดหัว หรือหายใจลำบาก เด็ก ผู้สูงอายุ คนที่เป็นโรคปอด โรคหัวใจ จะมีความเสี่ยงเป็นพิเศษ

การที่ฝุ่นละออง มีความเข้มข้นเพิ่มมากขึ้น ในอากาศที่เต็มไปด้วยหมอกควันไฟป่าในพื้นที่เกือบทั่วทั้งรัฐอัลเบอร์ตา ประชาชนต้องเผชิญกับท้องฟ้าขมุกขมัวเป็นสีแดง Matt Albers จากกรมอุตุนิยมวิทยาแคนาดากล่าวว่า “ที่เมือง Edmonton เหมือนกับว่าเราอยู่บนดาวอังคาร”

NASA Earth Observatory image by Lauren Dauphin, using data from DSCOVR EPIC Story by Adam Voiland.

การขับเคลื่อนหลายระดับเพื่อพลิกวิกฤติมลพิษทางอากาศ

ธารา บัวคำศรี

มลพิษทางอากาศ ซึ่งเป็นหนึ่งในความท้าทายด้านสิ่งแวดล้อมที่ใหญ่ที่สุดในยุคมนุษย์ครองโลก ถูกจัดให้เป็นวาระหลักภายใต้หัวข้อ Beat Air Pollution ของวันสิ่งแวดล้อมโลกในวันที่ 5 มิถุนายน พ.ศ.2562 นี้ ส่วนเจ้าภาพใหญ่คือ “สาธารณรัฐประชาชนจีน” ประเทศที่มีประชากรมากที่สุดในโลก 1.39 พันล้านคน มีเศรษฐกิจใหญ่เป็นอันดับ 2 ของโลกและขยายตัวรวดเร็วเป็นอันดับต้นๆของโลก ในขณะที่มลพิษทางอากาศในกรุงปักกิ่งกลับมาอีกครั้งหลังจากอัตราการใช้ถ่านหินเพิ่มขึ้นร้อยละ 13 มีการคาดการณ์ว่าในปี พ.ศ. 2593 อัตราการเสียชีวิตก่อนวัยอันควรจากมลพิษทางอากาศจะเพิ่มขึ้นเป็นสองเท่าในมหานครที่มีประชากรเกิน 10 ล้านคน (megacities) และพึ่งพาระบบเชื้อเพลิงฟอสซิลในการขับเคลื่อนเศรษฐกิจ

วาระ Beat Air Pollution เน้นถึงเรื่องที่เราทุกคนสามารถทำได้ในชีวิตประจำวันเพื่อลดมลพิษทางอากาศ และผลกระทบต่อสุขภาพของตัวเราเอง ปฏิบัติการลดมลพิษทางอากาศยังช่วยชะลอวิกฤตสภาพภูมิอากาศที่เป็นอีกด้านของเหรียญเดียวกัน มลพิษทางอากาศกลางแจ้งเป็นสาเหตุอันดับ 4 ของการเสียชีวิตก่อนวัยอันควรของประชากรโลก และคิดเป็นมูลค่าความเสียหายทางเศรษฐกิจในระดับโลกถึง 2.25 แสนล้านเหรียญสหรัฐต่อปี

ชุดข้อมูลมลพิษ PM2.5 ในรายงานสถานการณ์คุณภาพอากาศโลก พ.ศ.2561 ระบุว่าร้อยละ 64 ของเมืองกว่า 3,000 แห่งทั่วโลก มีความเข้มข้น PM2.5 สูงเกินกว่าข้อกำหนดขององค์การอนามัยโลก ส่วนการจัดอันดับเมืองมลพิษ PM2.5 โดยกรีนพีซ ช่วงปี พ.ศ.2561 ในประเทศไทย 39 เมืองจากทั้งหมด 53 เมืองใน 29 จังหวัดมีความเข้มข้น PM 2.5 เฉลี่ย 24 ชั่วโมง เกินมาตรฐานของประเทศไทย(50 ไมโครกรัมต่อลูกบาศก์เมตร) โดยมีวันที่เกินมาตรฐานตั้งแต่ 1 วันไปจนถึง 68 วัน ร้อยละ 98 ของเมืองในประเทศไทยมีความเข้มข้น PM2.5 เฉลี่ยรายปีสูงเกินกว่าข้อกำหนดขององค์การอนามัยโลก

แผนที่แสดงปริมาณละอองลอย(aerosol)ในบรรยากาศโลกระหว่างเดือนมกราคม พ.ศ.2543-เมษายน 2562 จากการเก็บข้อมูลโดยเครื่องมือวัด Moderate Resolution Imaging Spectroradiometer (MODIS) บนดาวเทียม Terra ขององค์การนาซา เป็นการวัดความทึบแสงของละอองลอย(aerosol optical thickness) ค่าความทึบแสงที่น้อยกว่า 0.1 (สีเหลืองจางในแผนที่)แสดงถึงท้องฟ้าแจ่มใสและทัศนวิสัยดี)  ส่วนค่าความทึบแสงเป็น 1 (สีน้ำตาลเข้มในแผนที่) แสดงถึงสภาพท้องฟ้าที่เต็มไปด้วยหมอกควัน) ที่มา : https://earthobservatory.nasa.gov/global-maps/MODAL2_M_AER_OD

ไม่ต้องกล่าวเลยว่าผู้คนต้องเผชิญกับผลที่จะเกิดขึ้นทั้งในระยะสั้นและระยะยาวจากการรับสัมผัสมลพิษ ทางอากาศที่เกินมาตรฐานเป็นระยะเวลานาน และหากไร้ซึ่งมาตรการจัดการที่ก้าวหน้า ผลที่ตามมา คือวิกฤตด้านสาธารณสุขที่ขยายวงกว้างมากขึ้น

การพลิกวิกฤตมลพิษทางอากาศต้องมีการขับเคลื่อนหลายระดับ ดังนี้

เริ่มจากตนเองและครอบครัว

  • ตรวจสอบรายงานและการพยากรณ์คุณภาพอากาศในพื้นที่ที่เราอาศัยอยู่โดยใช้แอปพลิเคชั่นต่างๆ เช่น Air4Thai แต่เนื่องจากยังไม่มีการรายงานตามเวลาจริง(real time) และโครงข่ายสถานีตรวจวัดยังไม่ครอบคลุมทั้งประเทศ ทางเลือกคือ Dustboy โดยเฉพาะผู้ที่อยู่ในเขตภาคเหนือตอนบน หรือ AirVisual, AQICN, Plume ซึ่งใช้กันแพร่หลายทั่วโลกโดยรายงานข้อมูลและคาดการณ์โดยใช้เกณฑ์ดัชนีคุณภาพของ USEPA ที่ยึดโยงกับผลกระทบสุขภาพตามข้อกำหนดขององค์การอนามัยโลก การเข้าถึงข้อมูลคุณภาพอากาศตามเวลาจริงนั้นมีความสำคัญไม่เพียงสร้างความเข้มแข็งของประชาชนให้รับมือกับมลพิษทางอากาศและปกป้องสุขภาพ แต่ยังเป็นหัวใจสำคัญในการสร้างความ ตระหนักและขับเคลื่อนแนวทางต่างๆเพื่อต่อกรกับมลพิษทางอากาศในระยะยาวอีกด้วย
  • ร่วมขยายเครือข่ายการตรวจวัดคุณภาพอากาศ รวมข้อมูลการตรวจวัดโดยภาคประชาชน โดยใช้นวัตกรรม
  • หลีกเลี่ยงกิจกรรมและการออกกำลังกายกลางแจ้งในวันที่คุณภาพอากาศไม่ดี หากจะต้องออกนอกบ้าน ใช้หน้ากากปิดจมูกเพื่อลดการสัมผัสกับมลพิษ แม้ว่าจะไม่ใช่การป้องกันที่ดีที่สุด รวมถึงปลูกต้นไม้ที่มีคุณสมบัติช่วยฟอกอากาศ และเพิ่มความชุ่มชื่นของอากาศภายในบ้าน

ตั้งคำถามเพื่อตรวจสอบการทำงานของรัฐบาล

  • มีการศึกษาผลกระทบของมลพิษอากาศต่อสุขภาพประชาชนอันเป็นรากฐานท่ีสำคัญของยุทธศาสตร์การจัดการคุณภาพอากาศหรือไม่อย่างไร?
  • มีการทบทวนและปรับปรุงมาตรฐานคุณภาพอากาศในบรรยากาศทุก 5 ปี และกำหนดเป้าหมายและกรอบเวลาในการปรับปรุงมาตรฐานมลพิษ PM2.5 ให้เข้าสู่เป้าหมายขององค์การอนามัยโลกซึ่งกำหนดค่าเฉลี่ยรายปีไว้ที่ 10 ไมโครกรัม/ลูกบาศก์เมตร หรือไม่อย่างไร?
  • มีการบูรณาการมาตรการควบคุมมลพิษจากรถยนต์และมาตรการลดก๊าซเรือนกระจกชึ่งให้ผลประโยชน์เพิ่มข้ึนเป็นทวีคูณ เช่น การใช้ระบบขนส่งมวลชนซึ่งลดปริมาณการจราจร ลดปริมาณการระบายมลพิษ ลดการจราจรติดขัด ลดการใช้เชื้อเพลิง เป็นต้น หรือไม่อย่างไร?
  • มีการกำหนดค่ามาตรฐานการปลดปล่อยมลพิษ PM2.5 จากแหล่งกำเนิดมลพิษหลัก (Emission Standard) ทั้งโรงไฟฟ้า โรงงานอุตสาหกรรม รวมถึงแหล่งกำเนิดเคลื่อนที่ เช่น รถยนต์ เป็นต้น ตลอดจนหรือไม่อย่างไร?
  • มีกรอบเวลาในการผ่าน(ร่าง)กฎหมายว่าด้วยทำเนียบการปลดปล่อยและเคลื่อนย้ายมลพิษ(PRTR) หรือไม่อย่างไร?
  • มีการนำ Emission Standard มาใช้เป็นฐานข้อมูลการปล่อยมลพิษทางอากาศของรถยนต์ในถนน หรือตำแหน่งการเผาในที่โล่ง หรือไม่อย่างไร? ทั้งนี้เพื่อทำให้เห็นภาพรวมการพัฒนาและศักยภาพการรองรับมลพิษทั้งหมด และพิจารณาได้ว่าควรอนุมัติโครงการใดให้เข้ามาตั้งในพื้นที่เพิ่มเติมได้อีกหรือไม่ รวมทั้ง หากเกิดวิกฤติมลพิษขึ้นอย่างในปัจจุบัน จะเข้าไปควบคุมแหล่งกำเนิดในพื้นที่ใดเป็นพิเศษ
  • มีระบบการจัดเก็บภาษีจากการปล่อยมลพิษหรือระบบการประกันความเสี่ยงทางสิ่งแวดล้อม เพื่อนำเงินที่เก็บได้มาใช้ป้องกันเยียวยาชีวิตผู้คนจากมลพิษทางอากาศรวมถึง PM2.5 หรือ การเปลี่ยนผ่านไปสู่ระบบการจัดการมลพิษที่แหล่งกำเนิด (Mitigation) (เช่น การพัฒนาระบบขนส่งสาธารณะ หรือสร้างสถานีเติมไฟให้รถยนต์ไฟฟ้า) หรือไม่อย่างไร?
  • มีการติดตามตรวจสอบและรายงานความเข้มข้นของสารมลพิษทางอากาศอื่น ๆ ที่เป็นภัยคุกคามสุขภาพอนามัยของประชาชน เช่น โพลีไซคลิกอะโรมาติกไฮโดรคาร์บอน (PAHs) โดยให้เป็นรายชื่อมลพิษเป้าหมาย (targeted substances/pollutants) ที่ถูกกำหนดขึ้นภายใต้ระบบทำเนียบการปลดปล่อยและเคลื่อนย้ายมลพิษ (Pollutant Release and Transfer Registers: PRTR) หรือไม่อย่างไร?
  • มีมาตรการทางเศรษฐศาสตร์และการปรับแก้กฏระเบียบในการเบิกจ่ายเงินในกองทุนสิ่งแวดล้อมเพื่อสนับสนุนให้เกษตรกร กลุ่มชุมชน หรือนักวิจัย ศึกษาวิธีการนำวัสดุที่มักจะถูกเผาจนก่อมลพิษมาใช้เป็นวัตถุดิบในการผลิตสิ่งของใหม่ ก่อให้เกิดอุตสาหกรรมและอาชีพใหม่ในชุมชนหรือไม่อย่างไร?
  • มีมาตรการและกฎหมายบังคับให้บริษัทและภาคเอกชนในการจัดตั้งกองทุนความเสี่ยง ป้องกัน และเยียวยาต่อประชาชนที่ได้รับหรืออาจจะได้รับผลกระทบจากมลพิษทางอากาศที่เกิดจากการลงทุนของภาคเอกชนในประเทศและข้ามพรมแดนหรือไม่อย่างไร?
  • มีความจริงจังในการสร้างความร่วมมือและประสานประเทศเพื่อนบ้านให้ลดการเผาและหมอกควัน ผ่านการผลักดันการดาเนินงานตาม Roadmap on ASEAN Cooperation towards Transboundary Haze Pollution Control with Means of Implementation เพื่อเปลี่ยนให้ภูมิภาคอาเซียนเป็นภูมิภาคปลอดหมอกควันข้ามแดนภายในปี 2563 มากน้อยเพียงใด?
  • จะเป็นผู้นำขับเคลื่อนในระดับอาเซียนให้ริเริ่มระบบติดตามสถานการณ์หมอกควันของอนุภูมิภาคลุ่มน้ำโขง (Mekong Sub-Regional Haze Monitoring System) เพื่อเฝ้าระวังและระบุตำแหน่งที่เกิดไฟและ/หรือพื้นที่เผาไหม้(burnt scar) และระบุภาระรับผิดในกรณีท่ีเกิดการเผาและก่อให้เกิดมลพิษจากหมอกควันข้ามพรมแดนจากพื้นที่ที่มีการใช้ประโยชน์ที่ดินในลักษณะต่างๆ โดยเฉพาะพื้นที่เกษตรกรรมพันธสัญญา หรือไม่อย่างไร?

จับตาบรรษัท(บริษัทและภาคธุรกิจเอกชน)

ในโลกปัจจุบันที่ถูกครอบงำด้วยระบบเศรษฐกิจแบบเสรีนิยม ภาคธุรกิจมีบทบาทสำคัญในฐานะผู้เล่นหลัก (Keystone Actors) ทั้งในประเทศและ ข้ามพรมแดน ความเสียหายทางสิ่งแวดล้อมและมลพิษทางอากาศที่เกิดจากภาคธุรกิจหรือเกี่ยวข้องกับภาคธุรกิจเกิดขึ้นอย่างแพร่หลายตลอดห่วงโซ่อุปทาน(Supply Chain)

เราจำเป็นต้องมีเครื่องมือเพื่อรับรองว่าบรรษัทจะไม่บิดพริ้วต่อภาระรับผิดในทางสาธารณะ(Corporate Accountability) มีการการติดตามผลการรายงานและตรวจสอบพฤติกรรมความรับผิดชอบของบรรษัท ในกรณีที่เกิดมลพิษทางอากาศที่สร้างความเสียหายต่อสังคม สิ่งแวดล้อมและสุขภาพของประชาชนขึ้น เครื่องมือดังกล่าวประกอบด้วยสิทธิการรับรู้และเข้าถึงข้อมูลข่าวสาร การชดเชยความเสียหาย และการฟื้นฟู รวมถึงการเคารพสิทธิมนุษยชนและสิทธิชุมชน

ร่วมเป็นส่วนหนึ่งเพื่อพลิกวิกฤตมลพิษทางอากาศ(Beat Air Pollution)เนื่องในวันสิ่งแวดล้อมโลกและการขับเคลื่อนเพื่อ “ขออากาศดีคืนมา” ได้ที่ https://www.greenpeace.org/thailand/act/righttocleanair/

อ้างอิง :

เรามีแผนรับมือและผู้เชี่ยวชาญ PM2.5 มากมาย เรายังขาดอะไร?

เมื่ออ่านรายงาน “โครงการศึกษาแหล่งกำเนิดและแนวทางการจัดการฝุ่นละอองขนาดไม่เกิน 2.5 ไมครอนในพื้นที่กรุงเทพและปริมณฑล” ที่จัดทำโดยกรมควบคุมมลพิษ https://bit.ly/2MLTDOO เราจะพบว่า เรามีแทบทุกอย่างที่พร้อมรับมือกับวิกฤตมลพิษทางอากาศที่เกิดขึ้น( Note : ที่เรียกว่าวิกฤตนั้นดูจากวันที่เกินค่ามาตรฐานเฉลี่ย 24 ชั่วโมงในเดือนมกราคม 2562 ที่ผ่านมา https://bit.ly/2WDDm2U)

รายงานดังกล่าวที่ตีพิมพ์ในเดือนสิงหาคม 2561 มีการรับฟังความคิดเห็นจากผู้เชี่ยวชาญและนักวิชาการรวม 60 คน จากกรมควบคุมมลพิษ กรมควบคุมโรค กรมอนามัย กรมโรงงานอุตสาหกรรม กรมการขนส่งทางบก กรมป้องกันและบรรเทาสาธารณภัย สำนักงานนโยบายและแผนการขนส่งและจราจร สำนักสิ่งแวดล้อมกรุงเทพมหานคร องค์การขนส่งมวลชนกรุงเทพ กองบังคับการตำรวจจราจร การรถไฟฟ้าขนส่งมวลชนแห่งประเทศไทย สถาบันปิโตรเลียมแห่งประเทศไทย สมาคมอุตสาหกรรมยานยนต์ไทย มหาวิทยาลัย 6 แห่ง และสำนักกองทุนสนับสนุนการสร้างเสริมสุขภาพ ข้อเสนอจากรายงานแบ่งเป็น “…แนวทางระยะสั้นที่ต้องดำเนินการในขณะที่เกิดปัญหา และแนวทางระยะยาว เพื่อเตรียมการรับมือและลดความรุนแรงของสถานการณ์ฝุ่น PM2.5 ที่อาจเกิดขึ้นอีกในช่วงเดือนมกราคม – มีนาคม 2562 และปีต่อๆ ไป…”

เรามีแผนรับมือและผู้เชี่ยวชาญมากมาย เรายังขาดอะไร?

เครดิตภาพ:

http://air4thai.pcd.go.th/webV2/history/

http://www.bangkokbiznews.com/news/detail/825901

ควันไฟป่าจะลอยไปทางไหน?

ธารา บัวคำศรี – แปลเรียบเรียงจาก https://earthobservatory.nasa.gov/images/144190/which-way-will-the-smoke-go

6 สิงหาคม 2561

ตอนที่กรมป่าไม้ของสหรัฐอเมริกา(the U.S. Forest Service) ประกาศว่าได้ควบคุมเหตุไฟป่าที่ Mendocino Complex Fire ได้ 100 เปอร์เซ็นแล้วในช่วงกลางเดือนกันยายน 2561 ที่ผ่านมา ไฟป่าได้เกิดขึ้นเกือบสองเดือน บ้านเรือนเสียหาย 157 หลังและ เผาผลาญพื้นที่มากกว่า 459,000 เอเคอร์ ถือเป็นเหตุไฟป่าครั้งใหญ่ที่สุดในประวัติศาสตร์ของรัฐแคลิฟอร์เนีย ระหว่างวันที่ 1 มกราคมจนถึงวันที่ 4 พฤศจิกายน โดยที่หมอกควันไฟกระจายไปทั้งภูมิภาคและส่วนต่างๆ ของประเทศ

ในอดีต พฤติกรรมของไฟป่าและแนวควันไฟนั้นยากแก่การคาดการณ์อย่างยิ่ง Andy Edman, จาก Western region wildfires for the National Weather Service กล่าวว่า “เป็นความท้าทายสำหรับแบบจำลองสภาพภูมิอากาศที่จะรู้ว่ามีไฟป่าที่ไหน สถานะเป็นอย่างไร และมีการปล่อยออกสู่บรรยากาศมากน้อยแค่ไหน มันคล้ายๆ กับงานรวมญาติ เกือบทุกคนทำตัวตามปกติ แต่พฤติกรรมของไฟป่าอาจคล้ายๆ กับลุงบ้าๆ ของคุณ ยากที่จะทำนาย”

แต่แบบจำลองใหม่ที่ใช้ข้อมูลจากดาวเทียมของ NOAA และ NASA นั้นได้พิสูจน์ให้เห็นว่าสามารถจำลองพฤติกรรมของควันไฟป่าได้ดีทีเดียว แบบจำลองชื่อ High-Resolution Rapid Refresh Smoke model, หรือ HRRR-Smoke ทำขึ้นจากแบบจำลองสภาพอากาศ  HRRR ที่มีอยู่แล้วของ NOAA ซึ่งทำการคาดาการณ์ฝน ลมและพายุ แบบจำลองนี้ยังนำข้อมูลเวลาจริงจากดาวเทียม the Joint Polar Satellite System’s Suomi-NPP และ NOAA-20 polar-orbiting satellites และ NASA’s Terra and Aqua satellites

ภาพบนซ้ายมาจาก Visible Infrared Imaging Radiometer Suite(VIIRS) บนดาวเทียม Suomi-NPPแสดงพื้นที่ภาคตะวันตกของสหรัฐอเมริกาในสีธรรมชาติช่วงบ่ายของวันที่ 6 สิงหาคม 2561 ในช่วงเหตุการณ์ไฟป่า the Mendocino Complex Fire สูงสุด ส่วนภาพบนขวาแสดงการจำลองการเคลื่อนตัวของควันไฟป่า (HRRR-Smoke simulation) จากพื้นที่และช่วงเวลาเดียวกัน

หัวใจสำคัญของแบบจำลอง HRRR-Smoke คือเมตริกที่เรียกว่า fire radiative power หรือ FRP โดยเป็นการวัดปริมาณความร้อนที่แผ่ออกมาจากเหตุการณ์ไฟที่มีการพิจารณาในหน่วยเมกะวัตต์ ตัวอย่างเช่น ไฟป่าขนาดใหญ่อาจมีความร้อนถึง 4,000 เมกะวัตต์ต่อพิกเซล (750×750 เมตร) การคำนวณหา radiative power และการกระจายตัวว่าไปทางไหนบ้าง สามารถช่วยนักวิทยาศาสตร์ชี้จุดเกิดไฟและคาดการณ์ความเข้มข้นและเส้นทางที่ควันไฟป่าจะลอยไป

แบบจำลอง HRRR-smoke model นำรวมกับข้อมูล FRP data ที่รวบรวมความเร็วลมและอุณหภูมิในบรรยากาศ รวมถึงแผนที่พืชพรรณ ยิ่งนักวิทยาศาสตร์ได้รู้ว่าอะไรถูกเผา การคาดการณ์โดยแบบจำลองก็จะดีขึ้น การวัดดังกล่าวนี้นำมาเป็นวางให้เป็นกริดสามมิติที่ขยายสูงราว 16 ไมล์ในบรรยากาศ ผลที่ได้คือการคาดการณ์ที่ละเอียดถึงปริมาณควันที่เกิดขึ้นจากไฟป่า ทิศทางที่ควันจะปล่อย และความสูงของควัน

August 6 – 7, 2018

Ravan Ahmadov ผู้พัฒนาแบบจำลอง HRRR-smoke model และนักวิจัยประจำ NOAA’s Earth Systems Research Laboratory และ the Cooperative Institute for Research in Environmental Sciences กล่าว “ควันไฟป่าใกล้พื้นผิวเป็นดัชนีของมลพิษทางอากาศ แต่ควันไฟป่าอาจลอยขึ้นไปในบรรยากาศที่สูงได้ เป็นเรื่องสำคัญมากที่จะรู้ เพราะว่าควันไฟป่าสามารถกระทบกับการเดินอากาศได้” ควันไฟป่าในบรรยากาศระดับสูง สามารถกันแสงอาทิตย์ที่มาจากนอกโลกซึ่งช่วยอุณหภูมิอากาศเย็นลงและเข้ารบกวนการผลิตพลังงานแสงอาทิตย์

แบบจำลอง HRRR-Smoke ถูกนำไปใช้โดยนักพยากรณ์อากาศและหน่วยงานรัฐ รวมถึงกลุ่มท้องถิ่น ในช่วงเหตุการณ์ไฟป่า Ferguson fire ในแคลิฟอร์เนีย กรมการขนส่งใช้แบบจำลอง HRRR-Smoke ในการช่วยตัดสินใจยกเลิกบริการรถไฟ Amtrak ในพื้นที่ นอกจากนี้ ยังถูกนำไปใช้กับกรมอุทยานแห่งชาติในช่วงปิดอุทยาน Yosemite

ในระดับท้องถิ่น โรงเรียนในรัฐยูทาอ้างถึงแบบจำลองเมื่อจะต้องเลือกให้เด็กนักเรียนอยู่ในอาคารในช่วงพักและเพื่อยกเลิกการแข่งขันกีฬาฟุตบอลอันเนื่องมาจากเหตุไฟป่าทางตอนใต้ของ Provo ในรัฐโอเรกอน โค้ชผู้ฝึกสอนว่ายน้ำเยาวชนย้ายการฝึกไปในสระว่ายน้ำในร่มหลังจากรับทราบถึงการพยากรณ์เรื่องควันไฟป่า

Edman กล่าวว่า “เมื่อเราสามารถแจ้งผู้คนให้ทราบว่าควันไฟป่าจะพัดไปทางใดและจะลอยค้างอยู่กี่วัน พวกเขาสามารถที่ว่าจะอะไรเพื่อตอบรับเหตุการณ์ที่เกิดขึ้น ถ้าคุณมีบุตรหลานที่เป็นโรคหืดหอบ คุณจะรู้ว่าต้องระวังมากขึ้น”