ไฟป่าอนุรักษ์ : ผลพวงของนโยบายที่ผิดพลาดและสัญญานเตือนของของภาวะฉุกเฉินด้านสภาพภูมิอากาศ

ไฟเผาผลาญพื้นที่ป่าอนุรักษ์

ตั้งแต่ต้นปี พ.ศ. 2563 เป็นต้นมา เกิดปรากฏการณ์ไฟรุนแรงในพื้นที่ป่าหลายแห่ง เริ่มจาก อุทยานแห่งชาติภูกระดึง จ.เลย ในเดือนกุมภาพันธ์ 2563 ส่งผลให้เกิดความเสียหายในพื้นที่ป่าสนเขาเป็นวงกว้าง การวิเคราะห์จากภาพถ่ายดาวเทียมพบว่า พื้นที่ป่าสนเขาถูกเผาไหม้ประมาณ 3,700 ไร่ กระจายทั้งทางด้านทิศตะวันตก ทิศเหนือและทิศตะวันออกเฉียงใต้ของอุทยานฯ (ทางตอนใต้ของผาเมษาและผาหมากดูก) ซึ่งเป็นรอยต่อกับพื้นที่การเกษตร ต่อมาในวันที่ 23 กุมภาพันธ์ ไฟป่าบนเทือกเขาบรรทัดซึ่งเผาผลาญพื้นที่ราว 5,600 ไร่ตามแนวตะเข็บชายแดนไทย-กัมพูชาส่งผลให้หลายพื้นที่ในจังหวัดตราดและพื้นที่ใกล้เคียง ถูกปกคลุมด้วยมลพิษทางอากาศจากไฟป่า รวมถึงจากการวิเคราะห์ภาพถ่ายดาวเทียม ในเขตกันชนรอบอุทยานแห่งชาติเขาใหญ่ อุทยานแห่งชาติทับลาน และอุทยานแห่งชาติปางสีดา มีพื้นที่ที่ได้ผลกระทบจากการเผาไหม้วันที่ 21–26 กุมภาพันธ์ 2563 รวมทั้งสิ้น 102,600 ไร่

ล่าสุด เกิดไฟป่ารุกหนักในเขตอุทยานแห่งชาติดอยสุเทพ-ปุย การวิเคราะห์ภาพจากดาวเทียม Sentinel-2ในวันที่ 25-30 มีนาคม ชี้ให้เห็นพื้นที่เสียหายจากไฟป่าเป็นบริเวณรวมกันมากกว่า 8,600 ไร่ ส่งผลให้หลายพื้นที่ในจังหวัดเชียงใหม่และใกล้เคียงถูกปกคลุมไปด้วยกลุ่มควันไฟที่เกิดขึ้นจากไฟป่า และเชียงใหม่ขึ้นแท่นเป็นเมืองที่มลพิษทางอากาศสูงที่สุดในโลกในช่วงเวลาดังกล่าว

ภาพถ่ายไฟป่าบริเวณดอยสุเทพของคืนวันที่ 29 มีนาคม © โดรนอาสา

การรายงานสถานการณ์ไฟป่าและหมอกควันจากปี พ.ศ.2528-2562 พบว่า พื้นที่ป่าอนุรักษ์ในเขตภาคเหนือตอนบนมีพื้นที่เผาไหม้ (burnt scar) ที่เป็นผลพวงจากไฟป่าเป็นจำนวนหลายล้านไร่ทุก ๆ ปี

อุทยานแห่งชาติและเขตรักษาพันธุ์สัตว์ป่า – พื้นที่เสี่ยงต่อวิกฤตสภาพภูมิอากาศ

ผืนป่าเป็นถิ่นที่อยู่อาศัยของสรรพชีวิต ป่าให้ความชื้น ความร่มเย็นและถ่ายเทออกซิเจน รวมถึงรักษาสมดุล วัฏจักรคาร์บอน ต้นไม้ช่วยกันลมและกันแดด ต้นไม้หยั่งรากลงบนผืนดิน ดูดซับและชะลอการไหลของน้ำ ป่าไม้เป็นแหล่งอาหาร ยารักษาโรค เชื้อเพลิงและวัสดุก่อสร้างที่มนุษย์นำมาใช้เพื่อดำรงชีวิต

พื้นที่เสี่ยงต่อวิกฤตสภาพภูมิอากาศ (Climate Change Hotspot) หมายถึงบริเวณที่จะได้รับผลกระทบอย่างรุนแรงจากเหตุการณ์สภาพอากาศสุดขั้วอันเป็นมาจากการเปลี่ยนแปลงสภาพภูมิอากาศ เนื่องจากเป็นบริเวณที่อุณหภูมิและปริมาณน้ำฝนเปลี่ยนแปลงอย่างมาก จนอาจทำให้ระบบนิเวศของผืนป่าในบริเวณนั้นเปลี่ยนแปลงไปจากเดิม

ในทางนิเวศวิทยา ไฟป่าเป็นส่วนหนึ่งของระบบนิเวศที่สมดุลในตัวเอง ป่าแห้ง ป่าไหม้ ป่ากลับฟื้นตัว เป็นวงจรปกติเช่นนี้เรื่อยไป อย่างไรก็ตาม นับตั้งแต่ พ.ศ.2423 มาจนถึงปัจจุบัน อุณหภูมิเฉลี่ยผิวโลกเพิ่มขึ้น 1.09 องศาเซลเซียส(เทียบกับยุคก่อนปฏิวัติอุตสาหกรรม) โดยมีปีที่ร้อนที่สุดเท่าที่มีการบันทึกเกิดขึ้นในช่วง 5 ปีที่ผ่านมา และฤดูกาลไฟป่ายาวนานขึ้นทั่วทั้ง 1 ใน 4 ของพื้นผิวโลกที่มีพืชพรรณปกคลุม การเปลี่ยนแปลงของสภาพอากาศไม่ว่าจะเป็น อุณหภูมิ ปริมาณน้ำฝน ระยะเวลาที่ได้รับฝนและความแห้งแล้งต่างส่งผลกระทบต่อการพัฒนา เติบโตและขยายพันธุ์ของพืช การศึกษาพบว่าการเปลี่ยนแปลงสภาพภูมิอากาศจะทำให้ระบบนิเวศป่าไม้ เกิดการเปลี่ยนแปลงอย่างถาวรในบางพื้นที่รวมถึงป่าเขตร้อน

การใช้แบบจำลองสภาพภูมิอากาศ(Climate Model)ศึกษาการแพร่กระจายของระบบนิเวศป่าไม้เป็น ครั้งแรกในประเทศไทยภายใต้การจำลองสภาพภูมิอากาศที่ก๊าซคาร์บอนไดออกไซด์เพิ่มเป็นสองเท่า ในชั้นบรรยากาศในปี พ.ศ.2539 และการศึกษาเฉพาะพื้นที่ภาคเหนือในปี พ.ศ.2551 พบว่าป่าในประเทศไทยเปลี่ยนแปลงไปสู่สภาพป่าที่แห้งแล้งขึ้นในแทบทุกพื้นที่ ป่าไม้ในพื้นที่เหล่านี้อาจเกิดการเปลี่ยนแปลงชนิดเนื่องจากสายพันธุ์ของสิ่งมีชีวิตต่างๆ ที่เคยอยู่อาศัยในพื้นที่นั้นมาก่อนไม่สามารถปรับตัวให้อยู่รอดในสภาพภูมิอากาศที่เปลี่ยนแปลงได้และระบุว่า อุทยานแห่งชาติและเขตรักษาพันธุ์สัตว์ป่าประมาณ 32 แห่งในประเทศไทยจะตกอยู่ในความเสี่ยงจากวิกฤตสภาพภูมิอากาศ

ท้องถิ่นจัดการตนเอง : ทางออกจากวิกฤต

การปะทุอย่างรุนแรงของไฟป่าในพื้นที่อนุรักษ์นั้นแยกไม่ออกจากการดำเนินงานตามนโยบายป่าไม้แห่งชาติและความลักลั่นของแผนปฏิบัติการต่างๆ เช่น แผนปฏิบัติการขับเคลื่อนวาระแห่งชาติ การแก้ไขปัญหามลพิษด้านฝุ่นละออง เป็นต้น ที่มีลักษณะสั่งการจากบนลงล่างและละเลยองค์ความรู้และศักยภาพในการจัดการทรัพยากรธรรมชาติของชุมชนท้องถิ่น

ป่าไม้เป็นระบบนิเวศที่มีความหลากหลายทางชีวภาพมากที่สุดบนผืนแผ่นดิน ทั่วโลก ประมาณว่ามีผู้คนกว่า 1.6 พันล้านคน รวมถึงกลุ่มชาติพันธุ์มากกว่า 2,000 กลุ่มวัฒนธรรมทั่วโลกนั้นมีวิถีชีวิตที่พึ่งพาป่าไม้โดยตรง ในประเทศไทย มีชุมชนที่พึ่งพาผืนป่าในรูปแบบป่าชุมชนอันเป็นวิถีปฏิบัติ การจัดการทรัพยากร และแนวทางในการรักษาพื้นที่ป่าและระบบนิเวศป่าไม้โดยให้ชุมชนมีส่วนร่วมอยู่ราว 2 ล้านครัวเรือน รวมเนื้อที่ป่าชุมชนทั้งในเขตป่าอนุรักษ์และป่าสงวนแห่งชาติราว 3 ล้านไร่

การที่มลพิษทางอากาศโดยเฉพาะอย่างยิ่ง PM2.5 จากไฟป่ากลายเป็นส่วนหนึ่ง ของวิกฤตด้านสาธารณสุขที่ซ้อนทับลงไปบนความขัดแย้งที่ลงลึกในทุกมิติและทุกระดับของสังคม จำเป็นอย่างยิ่งที่ต้องมีกลไกจัดการความขัดแย้งและปฏิบัติการบนพื้นฐานของความร่วมมือ มองผลประโยชน์สาธารณะเป็นที่ตั้ง และที่สำคัญคือการกระจายอำนาจให้ท้องถิ่นจัดการตนเอง

การที่ผืนป่าหลายแห่งของประเทศไทยมีความเสี่ยงสูงต่อวิกฤตสภาพภูมิอากาศ จำเป็นอย่างยิ่งที่จะต้องให้ความสำคัญเป็นอันดับแรกเพื่อสร้างความมั่นคงและเข้มแข็ง(Resilience)ของ ชุมชน แทนการกีดกันโดยใช้อำนาจรัฐ เช่น การปิดป่า 100% เพื่อดับไฟป่า เป็นต้น นโยบายป่าไม้แห่งชาติต้องเปิดกว้างต่อศักยภาพของชุมชนท้องถิ่นในการรับมือและปรับตัวต่อความสุดขั้วของสภาพภูมิอากาศในอนาคตบนรากฐานของความเป็นธรรมและเคารพศักดิ์ศรีของความเป็นมนุษย์

สถานการณ์นำ้ในวิกฤตโลกร้อน

วันน้ำโลกในปี พ.ศ.2563 นี้ยกประเด็น น้ำในวิกฤตโลกร้อน เป็นเรื่องสำคัญ สหประชาชาติระบุว่า การรับมือกับวิกฤตน้ำจากผลกระทบที่เป็นหายนะของการเปลี่ยนแปลงสภาพภูมิอากาศจะช่วยปกป้องสุขภาพและช่วยชีวิตผู้คน การใช้น้ำอย่างมีประสิทธิภาพยังช่วยลดการปล่อยก๊าซเรือนกระจกและกู้วิกฤตโลกร้อน

วิกฤตนำ้ทั่วโลก

  • แหล่งน้ำจืดของโลกร้อยละ 70 ใช้ในการเพาะปลูกพืชในระบบชลประทาน และการผลิตอาหารเลี้ยงประชากร ร้อยละ 22 ใช้ในอุตสาหกรรมการผลิตและพลังงาน(น้ำหล่อเย็นในโรงไฟฟ้าและเขื่อนผลิตไฟฟ้า) ขณะที่ร้อยละ 8 ใช้เพื่อบริโภค การสุขาภิบาล และนันทนาการในภาคครัวเรือนและธุรกิจ
  • ความต้องการใช้น้ำทั่วโลกเพิ่มขึ้นในอัตราร้อยละ 1 ต่อปี นับตั้งแต่คริสตทศวรรษ 1980s(พ.ศ.2523-2532) และภายในปี พ.ศ.2593 จะเพิ่มขึ้นอีกร้อยละ 20-30 ของระดับการใช้น้ำในปัจจุบัน
  • โดยเฉลี่ย ในจำนวนประชากร 10 คน จะมี 3 คน ที่เข้าไปถึงน้ำดื่มที่สะอาด
  • มี 17 ประเทศซึ่งมีประชากรรวมกัน 1 ใน 4 ของประชากรโลก กำลังเผชิญกับวิกฤตน้ำที่รุนแรงอย่างยิ่งยวด
  • ร้อยละ 25 ของประชากรโลกประสบกับวิกฤตน้ำแล้ว และจะเพิ่มเป็นร้อยละ 60 ภายในปี พ.ศ. 2568
  • มากกว่า 2 พันล้านคน อาศัยอยู่ในประเทศที่ประสบกับวิกฤตน้ำในระดับสูง
  • ประชากรราว 4 พันล้านคนทั่วโลกเผชิญกับการขาดแคลนน้ำอย่างรุนแรงอย่างน้อยที่สุด 1 เดือนต่อปี คาดว่าจำนวนนี้จะเพิ่มขึ้นเป็น 4.8 ถึง 5.7 พันล้านคนภายในปี พ.ศ. 2593 ก่อให้เกิดการแย่งชิงทรัพยากรระหว่างผู้ใช้น้ำ โดยที่น้ำจืดร้อยละ 60 มาจากลุ่มน้ำที่มีแม่น้ำไหลผ่านหลายประเทศ
  • ภายในปี พ.ศ.2583 เด็กอายุต่ำกว่า 18 ราว 600 ล้านคน จะมี 1 ใน 4 อาศัยอยู่ในพื้นที่ที่มีวิกฤตน้ำรุนแรงอย่างยิ่ง
  • สตรีและเด็กหญิงในทุกๆ 8 ครัวเรือนจาก 10 ครัวเรือนต้องแบกภาระในการออกไปหาน้ำจากพื้นที่ไกลออกไป
  • มากกว่า 68 ล้านคน ทั่วโลก(ในปี พ.ศ.2560) ต้องอพยพโยกย้ายถิ่นฐานจากการที่ไม่สามารถเข้าถึงแหล่งน้ำในการอุปโภคและบริโภคได้
  • คณะกรรมาธิการแม่น้ำโขงรายงานว่า ภายในปี พ.ศ.2583 ร้อยละ 97 ของการไหลของตะกอนไปยังสามเหลี่ยมปากแม่น้ำโขงอาจถูกดักไว้ หากโครงการสร้างเขื่อนทั้งหมดที่วางแผนไว้ถูกสร้างขึ้น

ถ่านหินใช้น้ำและก่อมลพิษต่อแหล่งน้ำของเราอย่างไร

น้ำสะอาด ราคาที่เหมาะสมและเข้าถึงได้ เป็นทรัพยากรธรรมชาติที่ขาดแคลนที่สุดในโลกของเรายังถูกคุกคามโดยอุตสาหกรรมถ่านหิน น้ำจืดปริมาณมหาศาลถูกนํามาใช้และปนเปื้อนมลพิษจากการทําเหมืองถ่านหิน รวมถึงการขนส่งและการผลิตไฟฟ้า

โรงไฟฟ้าถ่านหินขนาด 1,000 เมกะวัตต์หนึ่งแห่งในอินเดียใช้น้ำพอๆ กับความต้องการพื้นฐานของคนเกือบ 700,000 คน โดยทั่วไป โรงไฟฟ้าถ่านหินใช้น้ำประมาณร้อยละ 8 จากความต้องการน้ำทั้งหมด แต่ความต้องการน้ำอันไร้ขีดจํากัดของอุตสาหกรรมถ่านหินซ้ำเติมวิกฤตน้ำโดยเฉพาะอย่างยิ่งในอินเดีย จีน ออสเตรเลีย และแอฟริกาใต้

มลพิษเกิดขึ้นในทุกกระบวนการในวัฐจักรถ่านหิน ทำให้น้ำปนเปื้อนด้วยโลหะหนักและสารพิษในระดับที่เป็นอันตรายต่อมนุษย์และสัตว์ป่าอย่างมีนัยสำคัญ การได้รับพิษนี้จะเพิ่มโอกาสความพิการแต่กำเนิด ความเจ็บป่วย และการเสียชีวิตก่อนวัยอันควร การปนเปื้อนมลพิษจากถ่านหินคือภัยคุกคามที่มองไม่เห็นต่อสุขภาพของมนุษย์และสิ่งแวดล้อม

การทำเหมืองถ่านหิน การชะล้างและการเผาไหม้ได้ปล่อยสารเคมีที่เป็นพิษและโลหะหนักออกสู่สิ่งแวดล้อม สำหรับการขุดถ่านหินทุก ๆ 1 ตัน น้ำใต้ดินราว 1 ถึง 2.5 ลูกบาศก์เมตร จะไม่สามารถนำไปใช้อุปโภคและบริโภคได้ กลุ่มเหมืองถ่านหินขนาดยักษ์ในออสเตรเลีย (Galilee Basin) จะต้องสูบน้ําทิ้งมากถึง 1.3 พันล้านลิตร ซึ่งเป็นปริมาณท่ีมากกว่าน้ําในอ่าวซิดนีย์ถึง 2.5 เท่า การสูบน้ำออกนี้จะทําให้ระดับน้ำใต้ดินลดลงอย่างมาก ผลคือบ่อน้ําชุมชนโดยรอบใช้การไม่ได้และยังส่งผลกระทบต่อแม่น้ําในบริเวณใกล้เคียง

วิกฤตน้ำ 2020 ในประเทศไทย

ประเทศไทยกำลังเจอกับความแห้งแล้งครั้งร้ายแรงที่สุดในรอบสี่ทศวรรษ ราวครึ่งหนึ่งของบรรดาอ่างเก็บน้ำในประเทศมีน้ำต่ำกว่าครึ่งหนึ่งของศักยภาพที่กักเก็บน้ำไว้ได้ น้ำในแม่น้ำต่ำในระดับที่ทำให้น้ำเค็มจากทะเลรุกเข้ามาถึงพื้นที่ตอนบนของแม่น้ำและส่งผลกระทบต่อแหล่งน้ำบริโภค

แผนที่ด้านบนแสดงความผิดปกติของความชื้นในดิน(soil moisture anomalies) ซึ่งเป็นดัชนีที่ระบุว่าน้ำในผิวดินมีค่าสูงหรือต่ำกว่าปกติในพื้นที่แถบภูมิภาคเอเชียตะวันออกเฉียงใต้ระหว่างวันที่ 1 มกราคม ถึงวันที่ 7 กุมภาพันธ์2563 โดยใช้ข้อมูลที่รวบรวมจากปฏิบัติการ Soil Moisture Active Passive (SMAP) ซึ่งเป็นดาวเทียมขององค์การนาซาดวงแรกที่ใช้วัดปริมาณน้ำในผิวดิน เครื่องมือวัด Radiometer บนดาวเทียมทำการตรวจจับปริมาณน้ำลึก 2 นิ้วจากผิวดิน นักวิทยาศาสตร์ใช้ข้อมูลดังกล่าวนี้ในแบบจำลองอุทกศาสตร์ซึ่งมีความสำคัญสำหรับภาคเกษตรกรรมเพื่อประเมินว่ามีปริมาณน้ำในชั้นดินที่ลึกลงไปอยู่มากน้อยเท่าไร (ที่มา:ที่มา : NASA Earth Observatory image by Lauren Dauphin using soil moisture data from NASA-USDA and the SMAP Science Team)

การที่ประเทศไทยมีปริมาณน้ำจืดต่อหัวน้อยที่สุดในเอเชียตะวันออกเฉียงใต้ นอกจากต้องเผชิญกับการขาดแคลนน้ำมากขึ้นแล้ว ทรัพยากรน้ำของประเทศไทยกำลังถูกครอบงำโดยกลุ่มผลประโยชน์อุตสาหกรรมจากการกำหนดนโยบายของรัฐซึ่งนำไปสู่ความขัดแย้งเหนือทรัพยากรน้ำระหว่างภาคเกษตรกรรม อุตสาหกรรมและเมืองที่ตึงเครียดขึ้นทุกขณะ ปัญหาจึงไม่ได้อยู่ที่ว่าเรามีน้ำเพียงพอหรือไม่ แต่รากเหง้าคือวิธีการจัดการทรัพยากรน้ำและการกระจายน้ำอย่างเท่าเทียมกัน

ในยุคที่สภาพภูมิอากาศมีความสมดุล เป็นช่วงเวลาที่เราสามารถวางแผนล่วงหน้า สร้างบ้านแปงเมือง และทำการเพาะปลูกตามสภาพดินฟ้าอากาศและน้ำ แต่การแทรกแซงธรรมชาติทำให้ช่วงเวลาเหล่านั้นกำลังหมดลง จากนี้ไปสภาพภูมิอากาศจะโหดร้ายทารุณ วิกฤตน้ำจะรุนแรงขึ้นภายใต้สภาพภูมิอากาศที่โหดร้ายขึ้น

น้ำกำหนดชะตากรรมของเรา และเรากำหนดชะตากรรมของน้ำ

ว่าด้วยอุณหภูมิเฉลี่ยผิวโลก

โลกร้อนขึ้น อุณหภูมิที่อ่านจากเทอร์โมมิเตอร์ทั่วโลกมีระดับเพิ่มขึ้นนับตั้งแต่การปฏิวัติอุตสาหกรรม สาเหตุมาจากทั้งกิจกรรมของมนุษย์และการแปรเปลี่ยนทางธรรมชาติผสมกัน ด้วยหลักฐานที่มีความสำคัญมากขึ้น ระบุว่าสาเหตุของการเพิ่มเกิดจากกิจกรรมของมนุษย์เป็นหลัก

จากการวิเคราะห์อุณหภูมิอย่างต่อเนื่องโดยทีมนักวิทยาศาสตร์ที่ NASA’s Goddard Institute for Space Studies (GISS) อุณหภูมิเฉลี่ยผิวโลกเพิ่มขึ้นมากกว่า 1 องศาเซลเซียส(หรือ 2 องศาฟาเรนไฮต์)เล็กน้อยนับตั้งแต่คริสตทศวรรษ 1880 สองในสามของอุณหภูมิเฉลี่ยผิวโลกที่เพิ่มขึ้นนั้นเกิดขึ้นนับตั้งแต่ปี ค.ศ.1975(พ.ศ.2518) โดยมีอัตราการเพิ่มราวๆ 0.15-0.20 องศาเซลเซียสต่อทศวรรษ

แต่เราทำไมต้องแคร์การเพิ่มขึ้นของอุณหภูมิเฉลี่ยผิวโลกที่ 1 องศา? จะว่าไปแล้ว การขึ้นลงของอุณหภูมิในแต่ละวันของพื้นที่ที่เราอาศัยอยู่ก็มากกว่านั้นอยู่แล้ว

การบันทึกอุณหภูมิผิวโลกนั้นแทนค่าเฉลี่ยของพื้นผิวโลกทั้งหมด อุณหภูมิที่เราเจอในพื้นที่และในช่วงเวลาสั้นๆ นั้นผันผวนขึ้นลงอย่างมากเนื่องจากเหตุการณ์ที่เป็นวัฐจักรซึ่งสามารถคาดการณ์ได้ (กลางคืนและกลางวัน ฤดูร้อนและฤดูหนาว) แบบแผนของกระแสลมและการตกของน้ำฟ้าที่คาดการณ์ยาก แต่อุณหภูมิโลกขึ้นอยู่กับว่ามีพลังงานเท่าใดที่โลกได้รับจากดวงอาทิตย์และพลังงานดังกล่าวนั้นแผ่กลับออกไปนอกโลกเท่าไร-ปริมาณพลังงานเปลี่ยนแปลงน้อยมาก ส่วนปริมาณพลังงานที่แผ่ออกจากพื้นผิวโลกขึ้นอยู่องค์ประกอบของสารเคมีในชั้นบรรยากาศโดยเฉพาะอย่างยิ่งปริมาณก๊าซเรือนกระจกที่กักเก็บความร้อน

การเปลี่ยนแปลงระดับโลกที่ 1 องศาจึงมีนัยสำคัญยิ่งเนื่องจากมันต้องใช้ปริมาณมหาศาลของความร้อนในการทำให้มหาสมุทร ชั้นบรรยากาศและแผ่นดินอุ่นขึ้น(ที่ 1 องศาเซลเซียส) ในอดีต การลดลงของอุณหภูมิผิวโลกเพียง 1 หรือ 2 องศา สามารถทำให้โลกเข้าสู่ยุคน้ำแข็ง(Little Ice Age) การลดลงของอุณหภูมิโลกลง 5 องศา เพียงพอที่ทำให้พื้นที่ส่วนใหญ่ของทวีปอเมริกาเหนืออยู่ใต้มวลน้ำแข็งหนาเมื่อ 20,000 ปีก่อน

การบันทึกอุณหภูมิเฉลี่ยผิวโลกเริ่มขึ้นในราวปี ค.ศ.1880 เนื่องจากการเก็บรวบรวมข้อมูลยังไม่ครอบคลุมไปทั่วโลกก่อนหน้านั้น กรมอุตุนิยมวิทยาสหรัฐอเมริกาใช้ช่วง ค.ศ. 1951-1980 เป็นปีฐานของอุณหภูมิเฉลี่ย การวิเคราะห์อุณหภูมิของ GISS เริ่มในราวปี ค.ศ.1980 ดังนั้น คาบสามทศวรรษที่ใช้อ้างอิงมากที่สุดคือ ระหว่าง ค.ศ.1951-1980 ช่วงเวลาดังกล่าวนี้เป็นช่วงของรุ่นคนที่เป็นผู้ใหญ่ในปัจจุบันได้เติบโตขึ้น จึงเป็นช่วงเวลาที่มีการอ้างอิงที่อยู่ในความทรงจำของคนจำนวนมาก

กราฟด้านล่างแสดงความเปลี่ยนแปลงของอุณหภูมิเฉลี่ยผิวโลกจากปี ค.ศ.1880(พ.ศ.2423) ถึงปี ค.ศ.2019(พ.ศ.2562) จากการบันทึกข้อมูลขององค์การนาซา NOAA กลุ่มวิจัย Berkeley Earth และ Met Office Hadley Centre แห่งสหราชอาราจักร และการวิเคราะห์ของ Cowtan and Way แม้ว่าการวัดของสำนักต่างๆ เหล่านี้จะมีความแตกต่างกันเล็กน้อยปีต่อปี แต่ทั้งห้าสำนักแสดงให้เห็นความสอดคล้องกันของแบบแผนการขึ้นลงของอุณหภูมิ การบันทึกอุณหภูมิของทั้ง 5 สำนักแสดงถึงการเพิ่มขึ้นของอุณหภูมิเฉลี่ยผิวโลกในช่วงทศววรษที่ผ่านมา

การวิเคราะห์อุณหภูมิผิวโลกเฉลี่ยของนาซามาจากสถานีตรวจวัดอากาศ 20,000 สถานี ทั้งภาคพื้นดิน เรือ และทุ่นลอย รวมถึงสถานีวิจัยต่างๆ ในทวีปแอนตาร์กติก การวัดจะนำเอาอัลกอริธึมมาใช้พิจารณาถึงอิทธิพลของความแตกต่างระหว่างสถานตรวจวัดอากาศ ปรากฏการณ์เกาะความร้อนในเมือง โดยคำนวณการเปลี่ยนแปลงอุณหภูมิเฉลี่ยผิวโลกโดยใช้ปีฐาน ค.ศ.1951-1980

ทีมนักวิทยาศาสตร์ของ GISS ระบุจุดประสงค์การวิเคราะห์เพื่อประมาณการการเปลี่ยนแปลงของอุณหภูมิด้วยการคาดการณ์ถึงการเปลี่ยนแปลงสภาพภูมิอากาศโลกที่เชื่อมโยงกับคาร์บอนไดออกไซด์ในบรรยากาศ ละอองลอยและการเปลี่ยนแปลงของกิจกรรมของดวงอาทิตย์

โลกร้อนมิได้หมายถึงอุณหภูมิทุกจุดบนพื้นผิวโลกเพิ่มขึ้น 1 องศา ทุกครั้งไป อุณหภูมิในปีหนึ่งๆ หรือในทศวรรษหนึ่งๆ อาจเพิ่มขึ้น 5 องศาในที่หนึ่ง และลดลง 2 องศาในอีกที่หนึ่ง ฤดูหนาวที่เย็นผิดปกติในภูมิภาคหนึ่งอาจตามมาด้วยฤดูร้อนรุนแรงในเวลาต่อมา หรือฤดูหนาวที่เย็นยะเยือกในที่หนึ่งอาจถ่วงดุลด้วยฤดูหนาวที่อุ่นขึ้นอย่างผิดปกติในอีกฟากฝั่งหนึ่งของโลก โดยรวม ภาคพื้นดินจะร้อนขึ้นมากกว่าผิวมหาสมุทร เนื่องจากมวลน้ำจะค่อยๆ ดูดซับความร้อนและค่อยๆ คายความร้อนออก (มหาสมุทรโลกมีความเฉี่อยทางความร้อนมากกว่าพื้นผิวดิน) การเพิ่มขึ้นของอุณหภูมิเฉลี่ยผิวโลกแตกต่างกันอย่างมากในแต่ละภาคพื้นทวีปและแอ่งมหาสมุทร

อ้างอิง

Hansen, J., et al. (2010). Global surface temperature change. Reviews of Geophysics, 48.

NASA Earth Observatory (2015, January 21) Why So Many Global Temperature Records?

NASA Earth Observatory (2010, June 3) Global Warming.

NASA Goddard Institute for Space Studies (2020) GISS Surface Temperature Analysis (GISTEMP).

NOAA National Centers for Environmental Information (2020, January 15) Assessing the Global Climate in 2019.