ไฟป่าในแอมะซอนรุนแรงหนักมากในปี พ.ศ.2562

ช่วงกลางฤดูกาลไฟในภูมิภาคแอมะซอน นักวิทยาศาสตร์ใช้ดาวเทียมขององค์การนาซาติดตามการเกิดไฟที่ยืนยันว่าเพิ่มขึ้นทั้งจำนวนและความหนาแน่นในผืนป่าแอมะซอนของบราซิลในปี พ.ศ.2562 เรียกได้ว่าเป็นไฟป่าที่มากที่สุดในภูมิภาคนี้นับตั้งแต่ปี พ.ศ.2553 เป็นต้นมา

การเกิดไฟในแอมะซอนเปลี่ยนแปลงปีต่อปี และเดือนต่อเดือนอย่างเห็นได้ชัด โดยเป็นผลพวงจากการเปลี่ยนแปลงสภาพเศรษฐกิจและสภาพภูมิอากาศ นาย Douglas Morton หัวหน้าห้องปฏิบัติการ the Biospheric Sciences Laboratory ที่ NASA’s Goddard Space Flight Center กล่าวว่า เดือนสิงหาคม 2562 นั้นโดดเด่นสุดเพราะการเกิดไฟที่ขยายวงกว้าง หนาแน่นและยาวนานตามเส้นถนนสายหลักของผืนป่าแอมะซอนตอนกลางเพิ่มขึ้นอย่างชัดเจน ในอดีตความแห้งแล้งเป็นตัวนำให้เกิดไฟ ช่วงเวลาและตำแหน่งที่มีการตรวจพบการเกิดไฟในช่วงต้นของฤดูแล้งของปี 2562 นี้ สอดคล้องกับการแผ้วถางป่าเพื่อการเกษตรมากกว่าความแห้งแล้ง

Morton กล่าวว่า “ดาวเทียมจะเป็นสิ่งแรกที่ตรวจจับการเกิดไฟในพื้นที่อันห่างไกลของแอมะซอน เครื่องมือหลักๆ ที่ใช้ตรวจจับการเกิดไฟตั้งแต่ปี พ.ศ.2545 คือ Moderate Resolution Imaging Spectroradiometer (MODIS) บนดาวเทียม Terra และ Aqua

ณ ช่วงฤดูกาลเกิดไฟ เครื่องมือ MODIS ได้ตรวจจับจุดเกิดไฟในปี พ.ศ.2562 มากกว่าจุดเกิดไฟทั่วทั้งผืนป่าแอมะซอนของบราซิลนับตั้งแต่ปี พ.ศ.2553 รัฐแอมะซอนาสพบจุดเกิดไฟเข้มข้นในปี 2562 นี้

Morton ระบุว่า สถิติการเกิดไฟที่เผยแพร่โดยนาซาและที่เผยแพร่โดย Instituto Nacional de Pesquisas Espaciais (INPE) ของบราซิลนั้นตรงกัน INPE ใช้ข้อมูลจุดเกิดไฟจากเครื่องมือ ตแอมะซอนของบราซิล ผลคือทั้ง นาซาและมีข้อมูลการเปลี่ยนแปลงการเกิดไฟจากเครื่องมือวัด ซึ่งสูงกว่าการเกิดไฟในช่วงช่วงเวลาเดียวกันของปีที่ผ่านมา

เครื่องมือ MODIS ที่ตรวจจับการเกิดไฟนำไปวิเคราะห์โดยโครงการ Global Fire Emissions Database (GFED) ทีมงานที่นี่ทำการประมวลผลข้อมูลภาพถ่ายดาวเทียมของนาซาในช่วง 17 ปีที่ผ่านมาเพื่อทำความเข้าใจที่ดีขึ้นถึงบทบาทของไฟในการเปลี่ยนแปลงระบบโลก การวิเคราะห์ของพวกเขาในพื้นที่แอมะซอนทางตอนใต้รวมถึงบางส่วนของบราซิล เปรูและโบลิเวียนั้นทำให้เห็นแบบแผนของการเกิดไฟระหว่างเดือนกรกฎาคมถึงเดือนตุลาคม ชุดข้อมูลสามามารถเข้าไปดูได้ที่นี่ https://www.globalfiredata.org/forecast.html

January 1, 2012 – August 21, 2019
January 1, 2012 – August 21, 2019

กราฟเหล่านี้แสดงถึงการตรวจจับจุดเกิดไฟจากเครื่องมือวัด MODIS และ Visible Infrared Imaging Radiometer Suite (VIIRS) บนดาวเทียม Suomi NPP ในวันที่22 สิงหาคม 2562 ยืนยันให้เห็นว่าปี 2562 มีจุดเกิดไฟสูงสุดนับตั้งแต่ปี 2545(ซึ่งเป็นจุดเริ่มต้นของการใช้เครื่องมือวัด VIIRS) ในรัฐทั้งเจ็ดของภูมิภาคแอมะซอนของบราซิล นอกจากนี้ ไฟป่าที่เกิดขึ้นในปี 2562 นี้ยังเข้มข้นกว่าปีที่ผ่านมา โดยใช้การวัดกำลังการแผ่รังสี(fire radiative power)สะสม

January 1, 2012 – August 21, 2019
January 1, 2012 – August 21, 2019

ในวันที่ 19 สิงหาคม 2562 เครื่องมือ MODIS บนดาวเทียมTerra ของนาซาจับภาพสีจริงตามธรรมชาติ(ภาพบนสุด) แสดงไฟป่าที่กำลังลุกในเขต Novo Progressoในรัฐ Pará ของบราซิล เมืองนี้ตั้งอยู่บนทางหลวงสาย BR-163 เส้นทางตรงในแนวเหนือใต้เชื่อมชุมชนเกษตรในแอมะซอนตอนใต้เข้ากับท่าเรือเดินสมุทรริมฝั่งแม่น้ำแอมะซอนในเมือง Santarém พื้นที่เกษตรและทุ่งหญ้าเลี้ยงสัตว์กระจายตามแนวทางหลวงเส้นทางอย่างเป็นระเบียบ ทางด้านตะวันตก มีถนนลูกรังเชื่อมกับเหมืองแร่ขนาดเล็กที่ขยายเจาะลึกเข้าไปในป่าฝนเขตร้อน

August 15 – 22, 2019

แผนที่ด้านบนแสดงการตรวจจับจุดเกิดไฟในบราซิลโดยเครื่องมือ MODIS ระหว่างวันที่ 15-22 สิงหาคม 2562 พื้นที่เกิดไฟแสดงเป็นสีส้ม และนำมาซ้อนทับกับภาพถ่ายดาวเทียมเวลากลางคืนโดยเครื่องมือ VIIRS จากข้อมูล พื้นที่เมืองปรากฏเป็นสีขาว พื้นที่ป่าเป็นสีดำ พื้นที่ทุ่งหญ้าเขตร้อนและพื้นที่ป่าละเมาะ (เรียกว่า Cerrado ในบราซิล) เป็นสีเทา จะสังเกตเห็นว่า จุดเกิดไฟในรัฐ Pará และ Amazonas จะกระจุกตัวบนทางหลวง BR-163 และ BR-230

นับตั้งแต่ปี พ.ศ.2546 ระบบ MODIS บนดาวเทียม Aqua และ Terra ของนาซาเก็บข้อมูลการเปลี่ยนแปลงที่ผิดปกติของความร้อน (โดยทั่วไปจากการเกิดไฟ) ทั่วโลก แผนที่จุดเกิดไฟนี้มาจากข้อมูลจากระบบ Fire Information for Resource Management System (FIRMS) เป็นผลิตภัณฑ์ที่พัฒนาขึ้นโดย the University of Maryland และโครงการ Applied Sciences ของ NASA. FIRMS ให้ข้อมูลไฟป่าใกล้เวลาจริงกับคนทำงานวิจัยทางด้านทรัพยากรธรรมชาติ อย่างไรก็ตาม สังเกตว่า แต่ละจุดบนแผนที่อาจไม่จำเป็นต้องสอดคล้องกับการเกิดไฟหนึ่งจุดในพื้นที่จริง จุดเกิดไฟจะแทนศูนย์กลางของพื้นที่ 1 ตารางกิโลเมตรโดยมีความร้อนที่เปลี่ยนแปลงไปจากปกติหนึ่งค่าหรือมากกว่า บางครั้งไฟที่เกิดต่อเนื่องกัน 1 ครั้ง จะบันทึกเป็นลักษณะของการเปลี่ยนแปลงไปจากปกติหลายๆ ครั้ง และถูกจัดเรียงเป็น 1 เส้น แทนเป็นแนวการเกิดไฟ

ที่มา : NASA Earth Observatory images by Joshua Stevens, using MODIS data from NASA EOSDIS/LANCE and GIBS/Worldview, Fire Information for Resource Management System (FIRMS) data from NASA EOSDIS, and data from the Global Fire Emissions Database (GFED). Story by Adam Voiland, with information from Douglas Morton (NASA’s Goddard Space Flight Center).

สำนักงานสภาพอากาศของสหประชาชาติยืนยันว่าโลกร้อนเป็นประวัติการณ์

จากการเผยแพร่ข้อมูลขององค์การอุตุนิยมวิทยาโลก(World Meteorological Organization: WMO) แสดงให้เห็นว่าปี 2015 2016 2017 และ 2018 เป็น 4 ปีที่มีอุณหภูมิสูงที่สุดตั้งแต่มีการตรวจวัดผลจากการวิเคราะห์ โดย 5 องค์กรระหว่างประเทศชั้นนำแสดงให้เห็นว่าอุณหภูมิพื้นผิวเฉลี่ยทั่วโลกในปี 2018 มีค่าสูงกว่าระดับยุคก่อนอุตสาหกรรม (1850-1900) ประมาณ 1 องศาเซลเซียส

Petteri Taalas เลขาธิการองค์การอุตุนิยมวิทยาโลก (WMO) กล่าวว่า “ แนวโน้มอุณหภูมิในระยะยาวมีความสำคัญมากกว่าการจัดอันดับของแต่ละปีและแนวโน้มดังกล่าวเพิ่มขึ้น โดย 20 อันดับปีที่อุณหภูมิสูงที่สุดอยู่ในช่วง 22 ปีที่ผ่านมาและในช่วง 4 ปีที่ผ่านมามีอุณหภูมิสูงขึ้นอย่างผิดปกติทั้งบนแผ่นดินและมหาสมุทร

นาย Taalas กล่าวว่า “อุณหภูมิเป็นเพียงส่วนหนึ่งที่บ่งบอกถึงสภาพอากาศที่รุนแรงและมีผลกระทบต่อหลายๆ ประเทศและประชาชนหลายล้านคน รวมทั้งมีผลกระทบร้ายแรงต่อเศรษฐกิจและระบบนิเวศดังในปี 2018 เหตุการณ์สภาพอากาศสุดขั้วหลายอย่างบ่งชี้ถึงการเปลี่ยนแปลงสภาพภูมิอากาศ นี่คือความจริงที่ต้องเผชิญ สิ่งที่สาคัญที่ทั่วโลกควรทำในเบื้องต้นคือลดการปล่อยก๊าซเรือนกระจกและวางมาตรการการปรับตัวกับสภาพภูมิอากาศ”

รายงานของคณะกรรมการระหว่างรัฐบาลว่าด้วยการเปลี่ยนแปลงสภาพภูมิอากาศ (The Intergovernmental Panel on Climate Change: IPCC) เป็นรายงานพิเศษในเดือนตุลาคม 2018 พบว่าการจำกัดการเพิ่มขึ้นของอุณหภูมิโลกไว้ที่ 1.5 องศาเซลเซียสภายในปี 2050 จะต้องมีการปรับเปลี่ยนการใช้ที่ดิน พลังงาน อุตสาหกรรม สิ่งปลูกสร้าง การคมนาคม และชุมชนเมือง เพื่อให้การปล่อยก๊าซคาร์บอนไดออกไซด์สุทธิทั่วโลกที่เกี่ยวข้องกับกิจกรรมของมนุษย์ลดลงประมาณ 45 เปอร์เซ็นต์ จากปี 2010 ภายในปี 2030

จากรายงานของ WMO ระบุว่าในขณะที่ทางทิศตะวันออกของสหรัฐอเมริกาและบางส่วนของแคนาดามีอุณหภูมิเย็นจัดเป็นประวัติการณ์ อลาสก้าและพื้นที่ส่วนใหญ่ของอาร์กติกกลับมีอุณหภูมิสูงกว่าค่าเฉลี่ย ในช่วงเดือนมกราคม พายุฤดูหนาวที่รุนแรงเข้าโจมตีทางฝั่งตะวันออกของทะเลเมดิเตอร์เรเนียนและบางส่วนของตะวันออกกลางส่งผลกระทบอย่างรุนแรงต่อประชากรทำให้ได้รับบาดเจ็บและไม่มีที่พักพิงที่เพียงพอกับผู้ลี้ภัย ความหนาวเย็นในต้นสัปดาห์ที่สามของเดือนมกราคมที่พัดไปทางใต้ผ่านคาบสมุทรอาหรับทำให้เกิดพายุฝุ่นจากอียิปต์ถึงซาอุดิอาระเบีย บาห์เรน กาตาร์ อิหร่านและสหรัฐอาหรับเอมิเรตส์ และทำให้มีเกิดฝนตกหนักที่ปากีสถานและทางตะวันตกเฉียงเหนือของอินเดีย

Omar Baddou นักวิทยาศาสตร์อาวุโสขององค์การอุตุนิยมวิทยาโลก (WMO) กล่าวว่ายุทธศาสตร์ระดับชาติมีความจำเป็นอย่างยิ่งโดยเฉพาะประเทศในภูมิภาคตะวันออกกลางและแอฟริกาเหนือ (MENA) ซึ่งไม่มียุทธศาสตร์เพื่อจัดการกับสภาพอากาศเงื่อนไขใหม่ โดยประเทศเหล่านี้คุ้นเคยกับสภาพอากาศในระดับปานกลางหรือกึ่งแห้งแล้ง แต่ตอนนี้ต้องเผชิญกับสภาพอากาศที่แห้งแล้งและรุนแรงมากขึ้น

ในการประชุมสุดยอดด้านภูมิอากาศในวันที่ 23 กันยายน 2019 มีวัตถุประสงค์เพื่อแสดงเจตจำนงทางการเมืองเพื่อเพิ่มความกระตือรือร้นให้บรรลุเป้าหมายของข้อตกลงปารีสปี 2015 ซึ่งประเทศต่างๆ ได้ตกลงร่วมกันเพื่อจำกัดการเพิ่มขึ้นของอุณหภูมิโลกไว้ที่ 1.5 องศาเซลเซียสซึ่งสูงกว่าระดับก่อนอุตสาหกรรมและแสดงให้เห็นถึงการเปลี่ยนแปลงในทุกพื้นที่ที่จำเป็นเพื่อทำให้เกิดการเคลื่อนไหวของพลเมือง โดยมุ่งเน้นไปที่ 9 ประเด็นสาคัญ ดังนี้

1. การเพิ่มมาตรการในการลดก๊าซเรือนกระจก

2. การเปลี่ยนไปใช้แหล่งพลังงานทางเลือก

3. การจัดการการเปลี่ยนแปลงทางอุตสาหกรรม

4. การแก้ปัญหาโดยพื้นฐานจากธรรมชาติ

5. โครงสร้างพื้นฐาน เมือง และการกระทำในท้องถิ่น

6. เงินทุนด้านภูมิอากาศและราคาคาร์บอน

7. การเพิ่มความสามารถในการฟื้นตัวและการปรับตัวต่อการเปลี่ยนแปลงทางภูมิอากาศ

8. การขับเคลื่อนทางสังคมและการเมือง

9. พลเมืองและการชุมนุมทางการเมือง

การแจ้งการอภิปรายในที่ประชุมพร้อมกับรายงานทางวิทยาศาสตร์ที่สำคัญอื่นๆ องค์การอุตุนิยมวิทยาโลก (WMO) จะออกรายงานสภาพภูมิอากาศปี 2018 ฉบับสมบูรณ์ (https://bit.ly/2Ty2RAM) ในเดือนมีนาคม 2019 ซึ่งจะให้ภาพรวมที่ครอบคลุมถึงความแปรปรวนและแนวโน้มของอุณหภูมิ เหตุการณ์ที่มีผลกระทบสูงและตัวชี้วัดสาคัญของการเปลี่ยนแปลงสภาพภูมิอากาศในระยะยาว เช่น การเพิ่มความเข้มข้นของก๊าซคาร์บอนไดออกไซด์ ทะเลน้ำแข็งอาร์กติกและ แอนตาร์กติก การเพิ่มขึ้นของระดับน้ำทะเลและความเป็นกรดของมหาสมุทร พร้อมทั้งคำแนะนำเชิงนโยบายทั่วทั้งองค์การสหประชาชาติสำหรับผู้มีอำนาจตัดสินใจเกี่ยวกับการมีอิทธิพลซึ่งกันและกันระหว่างสภาพอากาศภูมิอากาศและแหล่งน้ำและเป้าหมายการพัฒนาอย่างยั่งยืนของสหประชาชาติ

เรียบเรียงจาก

https://bit.ly/2WVtb9z

https://bit.ly/2EJhbQY

คลื่นความร้อนปกคลุมยุโรป (ปี พ.ศ.2562)

27 มิถุนายน 2562

เป็นช่วงต้นฤดูร้อนและยุโรปเริ่มรู้สึกถึงความร้อนแล้ว หลายๆ ส่วนของทวีปยุโรปประสบกับอุณหภูมิที่ร้อนที่สุดเท่าที่มีมาสำหรับปี 2562 บางเมืองในยุโรปมีอุณหภูมิสูงที่สุดทุบสถิติ

คลื่นความร้อนแสดงชัดเจนจากแผนที่ แสดงถึงอุณหภูมิทั่วทั้งยุโรปในวันที่ 27 มิถุนายน 2562 แผนที่นี้มาจากแบบจำลอง Goddard Earth Observing System (GEOS) และเป็นอุณหภูมิของอากาศที่ความสูงจากพื้น 2 เมตร พื้นที่สีแดงเข้มเป็นบริเวณที่แบบจำลองระบุว่ามีอุณหภูมิเกิน 40 องศาเซลเซียส

แบบจำลอง GEOS เหมือนกับแบบจำลองสภาพอากาศและแบบจำลองสภาพภูมิอากาศ คือใช้สมการทางคณิตศาสตร์ที่แสดงถึงกระบวนการทางกายภาพ(เช่น การตกของน้ำฟ้าและการเกิดเมฆ) เพื่อคำนวณว่าบรรยากาศจะเป็นอย่างไร การวัดคุณสมบัติทางกายภาพจริงๆ เช่น อุณหภูมิ ความชื้น และลม จะผนวกเข้าไปในแบบจำลองเป็นระยะ เพื่อให้การสร้างแบบจำลองใกล้เคียงกับความเป็นจริงมากที่สุดเท่าที่จะทำได้

ในวันที่ 27 มิถุนายน รายงานการเตือนภัย(Awareness reportจากเครือข่ายของการบริการทางอุตุนิยมวิทยาแห่งยุโรประบุว่าระดับอุณหภูมิอยู่ใน “ระดับที่เป็นอันตรายมาก” การเตือนภัยอยู่ในระดับสูงสุดในบางส่วนของสเปน ฝรั่งเศส สวิสเซอร์แลนด์ และโครเอเชีย กรมอุตุนิยมวิทยาฝรั่งเศสจัดลำดับเมืองหลายเมืองที่มีอุณหภูมิสูงที่สุดทุบสถิติ โดยหลายพื้นที่เคยเกิดคลื่นความร้อนถึงขั้นเสียชีวิตในช่วงปี พ.ศ.2546

คลื่นความร้อน พ.ศ.2562 เริ่มขึ้นในปลายเดือนมิถุนายน เมื่อมวลอากาศร้อนจากภูมิภาคซะฮาราเข้ามายังสเปน และเข้าปกคลุมยุโรปตอนกลาง รายงานข่าวยังอ้างถึงระบบความกดอากาศสูงที่เกี่ยวข้องกับดึงให้มวลอากาศร้อนเข้ามา คาดว่า ความร้อนที่เพิ่มขึ้นอย่างมากนี้จะมีไปตลอดทั้งเดือน

NASA Earth Observatory image by Joshua Stevens, using GEOS-5 data from the Global Modeling and Assimilation Office at NASA GSFC. Story by Kathryn Hansen.

มหาพายุหมุนเขตร้อนในโลกเรือนกระจก (Hothouse Earth)

ธารา บัวคำศรี

พายุมังคุดเริ่มก่อตัวเป็นพายุไต้ฝุ่นวันที่ 9 กันยายน 2561 ในมหาสมุทรแปซิฟิก พายุสร้างความเสียหายให้กับโครงข่ายไฟฟ้าเกือบทั้งหมดของเกาะกวมซึ่งเป็นส่วนหนึ่งของสหรัฐอเมริกาในวันที่ 13 กันยายน จากนั้นทวีความรุนแรงขึ้นเป็นมหาพายุไต้ฝุ่นโดยมีความเร็ว 205 กิโลเมตรต่อชั่วโมง ศูนย์กลางที่เรียกว่าตาของพายุกว้าง 50 กิโลเมตร ขนาดของพายุวัดเส้นผ่าศูนย์กลางเกือบ 900 กิโลเมตร มุ่งตรงไปยังเกาะลูซอนด้านเหนือสุดของฟิลิปปินส์ในพื้นที่ที่เป็นอู่ข้าวอู่น้ำแถบจังหวัดคากายัน (Cagayan) โดยความเร็วลมเพิ่มขึ้นเป็น 269 กิโลเมตรต่อชั่วโมง หลังจากนั้นข้ามทะเลจีนใต้เข้าถล่มฮ่องกงและมณฑลกวางตุ้งของจีนแผ่นดินใหญ่ สร้างผลกระทบและความเสียหายต่อผู้คนนับล้านที่อยู่อาศัยบริเวณชายฝั่งทะเลตามแนวเส้นทางของพายุไต้ฝุ่นมังคุดลูกนี้

นักวิเคราะห์ประเมินว่าความสูญเสียทางเศรษฐกิจทั้งในฮ่องกงและจีนแผ่นดินใหญ่อาจถึง 5 หมื่นล้านเหรียญสหรัฐ รวมกับความเสียหายของฟิลิปปินส์อีกราว 1.6-2 หมื่นล้าน ซึ่งคิดเป็นร้อยละ 5-6 ของจีดีพี (Gross Domestic Products) โดยที่รายงานภาคสนามล่าสุดมีเกษตรกรฟิลิปปินส์ได้รับผลกระทบ 124,000 รายและพืชผลทางการเกษตรเสียหายเกือบ 3 ล้านไร่

จากการวิเคราะห์ขององค์การว่าด้วยบรรยากาศและมหาสมุทรแห่งชาติของสหรัฐอเมริกา (NOAA) ช่วงที่พายุทวีความรุนแรงกลายเป็นมหาพายุไต้ฝุ่นมังคุดก่อนขึ้นฝั่งเกาะลูซอน ความแรงของพายุเทียบเป็นระดับ 5 ซึ่งเป็นระดับสูงสุดตามมาตรวัดแซฟเฟอร์-ซิมป์สัน (Saffir-Simpson Hurricane Scale) และมีขนาดใหญ่กว่าพายุเฮอริเคนฟลอเรนซ์ (Hurricane Florence) ที่พัดเข้าถล่มรัฐแคโลไรนาทางตอนเหนือในวันศุกร์ที่ 14 กันยายน 2561 ถึงสามเท่า

แม้พายุเฮอริเคนฟลอเรนซ์ (Hurricane Florence) จะอ่อนกำลังเมื่อขึ้นฝั่ง แต่ทำให้ฝนตกหนักต่อเนื่องในหลายพื้นที่ของรัฐแคโรไลนา ศูนย์ศึกษาพายุเฮอริเคนแห่งชาติระบุถึงความเสี่ยงที่เป็นภัยต่อชีวิตจากผลพวงของพายุคือคลื่นพายุซัดฝั่ง กระแสลมที่เกรี้ยวกราดและการเกิดน้ำท่วมขังบนฝั่ง ผู้เชี่ยวชาญคาดการณ์ถึงผลกระทบที่อาจเป็นไปได้ต่อโครงสร้างพื้นฐานด้านพลังงานรวมถึงโรงไฟฟ้านิวเคลียร์ 12 แห่ง ความเสี่ยงจากการรั่วไหลของกากสารพิษจากบ่อกักเก็บเถ้าถ่านหินที่กระจายอยู่ทั่วไปในพื้นที่ และผลกระทบด้านสาธารณสุขจากของเสียจากฟาร์มหมูและสัตว์ปีกที่หลุดรอดลงในแหล่งน้ำ ในวันที่ 17 กันยายน 2561 รายงานข่าวระบุว่ามีการรั่วไหลของเถ้าถ่านหินราว 2,000 ลูกบาศก์หลา จากบ่อกักเก็บในพื้นที่โรงไฟฟ้าถ่านหิน Sutton ของบริษัท Duke Energy

img_3014

แผนที่แสดงแบบแผนการตกสะสมของฝนเมื่อพายุเฮอริเคนขึ้นฝั่งที่รัฐแคโลไรนา และตำแหน่งและการกระจายตัวของบ่อกักเก็บเถ้าถ่านหิน ฟาร์มหมู พื้นที่ฟื้นฟูการปนเปื้อนสารพิษ (Superfund Site) และพื้นที่จัดเก็บสารเคมีอันตรายในพื้นที่ (ที่มา: https://www.nytimes.com/interactive/2018/09/13/climate/hurricane-florence-environmental-hazards.html?smid=fb-nytimes&smtyp=cur)

แม้ข้อมูลที่มีอยู่ในปัจจุบันรวมถึงรายงานประเมินฉบับที่ 5 ของคณะกรรมการระหว่างรัฐบาลว่าด้วยการเปลี่ยนแปลงสภาพภูมิอากาศ (IPCC) ที่ระบุว่า พลังงานที่โลกได้รับจากดวงอาทิตย์ระหว่าง พ.ศ. 2514-2553 กว่าร้อยละ 90 ถูกกักเก็บไว้ในมหาสมุทรและเป็นสาเหตุทำให้อุณหภูมิของมหาสมุทรร้อนขึ้นโดยเฉพาะมหาสมุทรชั้นบน(0 – 700 เมตร) ที่มีพลังงานความร้อนกักเก็บไว้ถึงร้อยละ 60 และส่วนที่ลึกกว่า 700 เมตรมีพลังงานความร้อนสะสมกว่าร้อยละ 30 นั้น จะไม่นำไปสู่ข้อสรุปที่หนักแน่นถึงความเชื่อมโยงความสัมพันธ์ของสภาพความแปรปรวนของดินฟ้าอากาศเหตุการณ์ใดเหตุการณ์หนึ่ง รวมถึงพายุหมุนเขตร้อนกับการเปลี่ยนแปลงสภาพภูมิอากาศ แต่ข้อมูลจากการสังเกตก็พบว่า ในกรณีของมหาสมุทรแอตแลนติก ความรุนแรงของพายุเฮอริเคนนั้นเพิ่มขึ้นนับตั้งแต่ช่วงคริสตทศวรรษ 1970 เป็นต้นมา

มหาพายุไต้ฝุ่นมังคุดซึ่งน่าจะเป็นพายุหมุนเขตร้อนที่รุนแรงที่สุดเข้าถล่มตอนเหนือของเกาะลูซอนในฟิลิปปินส์ ฮ่องกงและชายฝั่งตะวันออกของจีน และพายุเฮอริเคนฟลอเรนซ์ที่พัดเข้าถล่มชายฝั่งตะวันออกของสหรัฐอเมริกา ได้ทำให้นักวิทยาศาสตร์ต้องเน้นย้ำอีกครั้งว่าการเพิ่มขึ้นของอุณหภูมิเฉลี่ยผิวโลกนั้นหมายถึงพายุขนาดใหญ่ (mega-storms) จะกลายเป็นเรื่องปกติในอนาคต (new normal)

ในกรณีของพายุเฮอริเคนฟลอเรนซ์ ปัจจัยหลักสองประการที่หล่อเลี้ยงให้พายุยังทรงพลังคือ อุณหภูมิพื้นผิวมหาสมุทรและลมเฉือน (wind shear) ที่เป็นความแตกต่างระหว่างความเร็วลมด้านบนและด้านล่างของพายุ ยิ่งอุณหภูมิพื้นผิวมหาสมุทรอุ่นมากขึ้นและลมเฉือนต่ำ พายุเฮอริเคนยิ่งทรงพลังมากขึ้น เช่นเดียวกับมหาพายุไต้ฝุ่นไห่เยี่ยนที่สร้างความหายนะให้กับเมืองทาโคลบันทางตอนใต้ของฟิลิปปินส์ใน พ.ศ. 2556 และพายุไต้ฝุ่นอื่นๆ ในมหาสมุทรแปซิฟิก กรมอุตุนิยมวิทยาฮ่องกง (The Hong Kong Observatory) ยังระบุว่ามหาพายุไต้ฝุ่นเป็นเรื่องปกติมากขึ้นเรื่อยๆ เมื่อเทียบกับช่วงปี 2504 และ 2553 พายุหมุนสี่ลูกคือ เจอลาวัต (Jelawat) มาเรีย (Maria) เจบิ (Jebi) และมังคุด มีความแรงเป็นมหาพายุไต้ฝุ่นที่เกิดขึ้นในมหาแปซิฟิกเหนือและทะเลจีนใต้ที่เกิดขึ้นในปี พ.ศ.2561 นี้

จากฐานข้อมูลที่ได้บันทึกไว้ในรอบ 64 ปีที่ผ่านมา(พ.ศ.2494-2557)ในประเทศไทย พบว่าความถี่ของพายุหมุนเขตร้อนที่เคลื่อนเข้าสู่ประเทศไทยมีแนวโน้มลดลงอย่างมีนัยสำคัญ โดยการลดลงของกิจกรรมของพายุหมุนเขตร้อนในภาพรวมดังกล่าวส่งผลโดยตรงต่อปริมาณฝนและภาวะแห้งแล้งในประเทศไทย อย่างไรก็ตาม รายงานการสังเคราะห์และประมวลสถานภาพองค์ความรู้ด้านการเปลี่ยนแปลงสภาพภูมิอากาศของประเทศไทย 2559 มีข้อสังเกต(ความเชื่อมั่นระดับปานกลาง) ว่า เมื่อพิจารณาในรายละเอียด จำนวนพายุหมุนเขตร้อนในระดับที่รุนแรงกว่าพายุดีเปรสชั่นเขตร้อนที่เกิดขึ้นทั้งหมดในรอบทุกๆ 10 ปี กลับมีแนวโน้มเพิ่มขึ้นตั้งแต่ทศวรรษที่ 70 ซึ่งบ่งชี้ถึงความเสี่ยงที่เพิ่มขึ้นของประเทศไทยต่อเหตุการณ์สภาวะสุดขั้วของลมฟ้าอากาศทั้งจากเหตุการณ์ฝนตกหนักและน้ำท่วมที่เกิดขึ้นบ่อยครั้งสลับกับการเกิดภาวะความแห้งแล้งที่ยาวนานขึ้น

สิ่งที่มีร่วมกันของเหตุการณ์สภาวะสุดขั้วของลมฟ้าอากาศอย่างการเกิดมหาพายุหมุนเขตร้อนคือความเสียหายต่อชีวิต ทรัพย์สินและสิ่งแวดล้อมตามเส้นทาง มิติทางพื้นที่และเวลาของเหตุการณ์ดังกล่าวนี้สอดคล้องกับข้อสรุปและการคาดการณ์ของ IPCC ในเรื่องผลกระทบจากหายนะภัยทางธรรมชาติของเหตุการณ์สภาวะสุดขั้วของลมฟ้าอากาศ

ปี พ.ศ. 2561 นี้จึงเป็นห้วงแห่งการก่อตัวของจุดเปลี่ยนของวิวาทะว่าด้วยการเปลี่ยนแปลงสภาพภูมิอากาศ จากการที่เราได้สัมผัสเห็นถึงความจริงใหม่ที่กระทบกับเราโดยตรง เราได้เป็นประจักษ์พยานของสิ่งที่เกิดขึ้นไล่เรียงกัน ไม่ว่าจะเป็น ผลกระทบของเหตุการณ์สภาวะสุดขั้วของลมฟ้าอากาศ คำเตือนทางวิทยาศาสตร์ว่าด้วยโลกเรือนกระจก (Hothouse Earth) และข้อเสนออย่างถอนรากถอนโคน ณ ที่ประชุม Global Climate Action Summit ที่เมืองซานฟรานซิสโกว่าด้วยการลดการปล่อยก๊าซเรือนกระจกลงครึ่งหนึ่งภายในปี พ.ศ. 2573 จากทุกภาคส่วนกิจกรรมทางเศรษฐกิจ(ภาคพลังงาน ภาคการผลิตทางอุตสาหกรรม ภาคอาคารบ้านเรือน ภาคการคมนาคมขนส่ง ภาคการบริโภคอาหาร ภาคเกษตรกรรมและป่าไม้) ตลอดจนรายงาน IPCC ฉบับพิเศษว่าด้วยอุณหภูมิเฉลี่ยผิวโลก 1.5 องศาเซลเซียส (IPCC Special Report on 1.5 Degrees) ที่เตรียมเผยแพร่ในเร็วๆ นี้ เราในฐานะปัจเจกต้องตื่นรู้ และผลักดันผู้นำทางการเมือง บรรษัทและนักลงทุนให้ลงมือทำจากความท้าทายที่มีอยู่ทั้งหมดนี้ร่วมกัน

สุดท้าย เราต้องเรียนรู้จากประวัติศาสตร์ซึ่งบอกเราว่า ระบบเศรษฐกิจที่ตั้งมั่นอยู่ในสัมมาทิฐิ มีความยืดหยุ่นและฟื้นคืนสภาพได้เร็วเท่านั้นจะเป็นเครื่องมือในการเตรียมความพร้อมรับมือที่ยอดเยี่ยมที่สุดกับภัยพิบัติจากสภาพภูมิอากาศที่ทวีความสุดขั้วมากขึ้น ในขณะที่โครงสร้างเศรษฐกิจที่ฉ้อฉลและไม่เป็นธรรมจะทิ้งให้ผู้คนทั้งหลายตกอยู่ในความยากจนและผลกระทบอันเลวร้ายจากวิกฤตสภาพภูมิอากาศ

อุทกภัยแห่งศตวรรษในอินเดีย

india_mrg_2018230

สายฝนแห่งฤดูมรสุมถาโถมเข้ามาอย่างหนักหน่วงอินเดียและเอเชียตะวันออกเฉียงใต้ ผลคือก่อให้เกิดอุทกภัยครั้งร้ายแรงที่สุดในรัฐเคลาราของอินเดียนับตั้งแต่ปี ค.ศ.1924 (พ.ศ. 2467) เหตุเริ่มจากปริมาณฝนที่เทลงมาในวันที่ 8 สิงหาคม 2561 มีผู้คนนับล้านต้องอพยพ อีกหลายร้อยชีวิตต้องสูญเสีย บ้านเรือนเสียหายราว 50,000 หลัง ถือเป็นการตกของฝนที่มีปริมาณมากที่สุดของรัฐเคลาราในฤดูมรสุมนี้

ภาพบนแสดงปริมาณฝนตกสะสมระหว่างวันที่ 19 กรกฎาคมถึงวันที่ 18 สิงหาคม 2561 ปริมาณการตกสูงสุดในรัฐเคราลาเกิดขึ้นในวันที่ 20 กรกฎาคม และไปถึงระดับสูงผิดปกติระหว่างวันที่ 8 และ 16 สิงหาคม นับตั้งแต่เดือนมิถุนายน 2561 เป็นต้นมา พื้นที่แถบนี้รับการตกของฝนมากกว่าร้อยละ 42เทียบกับปริมาณการตกตามปกติในช่วงเวลาเดียวกัน ในช่วง 20 วันแรกของเดือนสิงหาคม รัฐเคราลามีฝนตกมากขึ้นร้อยละ 164 มากกว่าปริมาณการตกของฝนตามปกติ

ฝนยังตกแบบถล่มถลายในเอเชียตะวันออกเฉียงใต้ด้วย ภาคตะวันตกของเมียนมาร์เจอกับฝนที่กระหน่ำลงมาในช่วงกลางเดือนกรกฏาคมและเดือนสิงหาคม ก่อให้เกิดการสูญเสียชีวิตและทรัพย์สิน ผู้คน 150,000 คน ต้องอพยพในช่วงเวลาดังกล่าว เป็นอุทกภัยครั้งร้ายแรงในรอบ30 ปี ระดับน้ำในแม่น้ำ Bago และ Sittaung เพิ่มสูงที่สุดในรอบ 50 ปี แม่น้ำ Sittaung มีระดับสูง 7 ฟุต เกินระดับปลอดภัยของพื้นที่

ภาพเคลื่อนไหวด้านบนแสดงปริมาณฝนตกสะสมระหว่างวันที่ 19 กรกฎาคมถึงวันที่ 18 สิงหาคม 2561 ปริมาณการตกสูงสุดในเมียนมาเกิดขึ้นในวันที่ 29 กรกฎาคม

ข้อมูลข้างต้นมาจากเครื่องมือวัด Integrated Multi-Satellite Retrievals (IMERG) ภายใต้ภารกิจ Global Precipitation Measurement (GPM) ดาวเทียม GPM เป็นหัวใจสำคัญของการสังเกตการณ์การตกของฝนรวมถึงเครื่องมือวัดจาก Nasa องค์กรสำรวจอวกาศของญี่ปุ่นและองค์ระดับประเทศและสากลอีก 5 หน่วย การวัดปริมาณการตกของฝนภาคพื้นดินอาจมีระดับที่มากกว่าอย่างมีนัยสำคัญ

ที่มาข้อมูล : NASA Earth Observatory images by Joshua Stevens, using IMERG data from the Global Precipitation Mission (GPM) at NASA/GSFC. Story by Kasha Patel.

High commitment to Paris – insufficient action at home

Press Release Germanwatch, NewClimate Institute, and Climate Action Network (CAN)

Climate Change Performance Index 2018

  • Global energy transition taking up speed – but no country is doing enough
  • Countries have to strengthen targets and implementation
  • Sweden, Morocco, Norway leading the tableau – USA in the free fall

Bonn (November 15th, 2017): After a decade of rapid growth, we see a strong decrease in the growth rates of global CO2 emissions over the past years, sending signals for a decarbonisation of the global energy system. The Climate Change Performance Index 2018 (CCPI) confirms these developments in Greenhouse-Gas-emissions (GHG), renewable energies and energy use for some countries but also still clearly shows a current general lack of ambitious targets and sufficient implementation for a Paris-compatible pathway. Jan Burck, co-author of the CCPI at Germanwatch, comments: “We see a strong commitment to the global climate targets of the Paris Agreement in international climate diplomacy. The countries now have to deliver specific measures breaking down their commitments to a sectoral level.”

“We continue to see very positive developments regarding renewables and energy efficiency”, Stephan Singer from the Climate Action Network (CAN) and co-publisher of the CCPI, adds. “The data show encouraging growth in renewable energy, ever cheaper prices for solar and wind energy, and successes in saving energy in many countries. This was responsible for stabilising global energy CO2 emissions in the last three years. But progress is achieved much too slow for a fully renewable energy based world economy in a few decades, because growing oil and gas consumption is higher than the welcomed reduction in coal use”.

Key results of the CCPI 2018

Since no country is on a Paris-compatible path yet, the top three of the CCPI 2018 are still unoccupied.

“The gap in mid- and long-term ambition of the evaluated countries is still too high. In terms of GHG emissions, we see better 2030 targets in countries like Norway or India; comparably good targets for renewable energy, we see in for example Norway, Sweden or New Zealand. No country has a particularly outstanding energy efficiency target. Saudi Arabia and the United States generally have to drastically raise their 2030 ambition”, Prof. Niklas Höhne from the NewClimate Institute, co-author of the CCPI, explains.

With comparably positive developments in renewables and per capita emissions, Sweden ranks 4th in this year’s CCPI – following the empty top three. A relatively low emissions level and a very high trend in renewable energy are reasons for Lithuania’s 5th rank. Profiting from a good policy evaluation and relatively high 2030 targets, Morocco lands on position six, followed by Norway. India ranks 14th with a still low level of per capita emissions and energy use.  China on the contrary, with its high emissions and a growing energy use over the past five years, still ranks 41st. But better placements in the next years can be expected, since national experts highlighted the country has implemented policies to phase out coal capacity as well as promoting renewables and electric mobility.

Germany (rank 22), the co-host country for Fiji’s COP 23 Presidency, lands in the midfield of the CCPI 2018. The country has put a lot of effort into international climate diplomacy and globally committing to climate action. “Germany’s mid- and long-term targets are relatively strong but the last government failed on delivering concreate measures to effectively reduce emissions domestically. Germany shows a relatively good development of renewable energy in the electricity sector but the country is not at all on track to meet its 2020 target. It is absolutely crucial that the currently ongoing coalition negotiations come to an agreement on a coal phase out and getting a transition in the transport sector started”, Burck says.

Wendel Trio, Director of Climate Action Network (CAN) Europe, comments on the performance of the EU, which was evaluated in the CCPI 2018 for the first time: “The report reveals that the EU vows commitment to the Paris Agreement, but avoids real climate action at home. The EU needs to translate words into action and commit to deeper emission cuts than currently foreseen. Current discussions on the new clean energy policies and the EU budget offer excellent opportunities to increase ambition of the bloc’s climate action.”

Having declared its withdrawal from the Paris Agreement and dismantled major climate legislation of the previous government, the USA (rank 56) finds itself in the bottom five of the ranking. Besides, a very low policy evaluation, the country’s emissions level and energy use are considerably too high to be in line with a well-below 2°C pathway. The bottom three of the index is formed by Korea (rank 58), Iran (rank 59) and Saudi Arabia (rank 60), all of which are showing hardly any progress or ambition in reducing its emissions and energy use.

About the Climate Change Performance Index 2018, developed by Germanwatch and the NewClimate Institute:

The Climate Change Performance Index by Germanwatch and the NewClimate Institute is a ranking of the 56 countries and the EU, together responsible for about 90% of global GHG emissions. The methodology was improved in for the 2018 edition. The four categories examined are: emissions (40%), renewable energy (20%), energy use (20%) and climate policy (20%). The latter is based on expert assessments by NGOs and think tanks from the respective countries. One of the major achievements is that the CCPI now also evaluates to what extent the respective countries are taking adequate action within the categories emissions, renewables and energy use to being on track towards the global Paris-goal of limiting global warming to well below 2°C.

 

Annex: Press contacts

About 300 climate experts contributed to this year’s edition of the Climate Change Performance Index with their evaluation of national climate policies. The following agreed to be listed as a press contact for their country:

Country Name Organization Email
Algeria Sofiane Benadjila Independent Consultant sofbenadjila@hotmail.fr
Algeria Brahim Haddad Researcher mecanique25@hotmail.com
Algeria Radia Louz Independent Consultant radialouz@outlook.fr
Argentina Marisa Young Fundation Agreste eventos@fundacionagreste.org.ar
Argentina Juan Pablo Olsson 350.org juanpablo@350.org
Argentina Roque Pedace FoE roque.pedace@gmail.com
Australia Toby Halligan ACF Toby_Halligan@acf.org.au
Australia Simon Black GPAP simon.black@greenpeace.org
Austria Johannes Wahlmüller GLOBAL 2000 johannes.wahlmueller@global2000.at
Austria Adam Pawloff Greenpeace adam.pawloff@greenpeace.org
Belarus Dr. Alexandre Grebenkov United Nations Development Progarmme alexandre.grebenkov@undp.org
Belarus Rak Uladzimir Center for Environmental Solutions uladzimir.rak@gmail.com
Brazil William Wills Eos Consulting wills@eos.eco.br
Brazil Shigueo Watanabe Jr CO2 Consulting shigueo.watanabe@co2consulting.com.br
Brazil Tiago Reis IPAM tiago.reis@ipam.org.br
Bulgaria Antoaneta Yotova CAC Bulgaria toniyotova@gmail.com
China Jiaqiao Lin REEI linjiaqiao@reei.org.cn
China Mingde Cao China University of Political Science and Law mingde-cao@vip.163.com
Chinese Taipei Gloria Kuang-Jung Hsu Taiwan Environmental Protection Union kjhsu@ntu.edu.tw
Cyprus Georgia Shoshilou Federation of Environmental Organizations info@oikologiafeeo.org
Czech Republic Karel Polanecký Hnutí DUHA karel.polanecky@hnutiduha.cz
EU Wendel Trio CAN Europe wendel@caneurope.org
Germany Malte Hentschke Klima-Allianz malte.hentschke@klima-allianz.de
Germany Sebastian Scholz NABU Sebastian.Scholz@nabu.de
Germany Jan Kowalzig Oxfam jkowalzig@oxfam.de
Germany Ann-Kathrin Schneider BUND AnnKathrin.Schneider@bund.net
Greece Anthimos Chatzivasileiou WWF a.chatzivasileiou@wwf.gr
Greece Dimitis Ibrahim Greenpeace dimitris.ibrahim@greenpeace.org
Hungary Greenpeace info.hu@greenpeace.org
Hungary Béla Munkácsy Environmental Planning and Education Network munkacsy.bela@gmail.com
India Ajita Tiwari Laya, INECC ajitanjay@gmail.com
India Sanjay Vashist CANSA/HBF sanjayvashist@gmail.com
India Shankar Sharma shankar.sharma2005@gmail.com  
Indonesia Almo Pradana WRI almo.pradana@wri.org
Ireland Oisin Coghlan Stop Climate Chaos Coalition oisin@foe.ie
Italy Mauro Albrizio Legambiente albriziom@gmail.com
Italy Stefano Caserini Italian Climate Network stefano.caserini@gmail.com
Latvia Janis Brizga Green Liberty Latvia janis@zalabriviba.lv
Lithuania Inga Konstantinavičiūtė Lithuanian Energy Institute inga.konstantinaviciute@lei.lt
Mexico Jorge Villarreal ICM jorge.villarreal@iniciativaclimatica.org
Mexico Ninel Escobar WWF nescobar@wwfmex.org
Mexico Sandra Guzmán GFLAC sandra.lunag83@gmail.com
Morocco Touria Barradi Free expert consultant soraya.barradi@gmail.com
Netherlands Sible Schöne HIER sible@hier.nu
Netherlands Dian Phylipsen SQ Consult d.phylipsen@sqconsult.com
New Zealand Louisa McKerrow WWF lmckerrow@wwf.org.nz
Norway Silje Lundberg FoE sal@naturvernforbundet.no
Norway Kåre Gunnar Fløystad ZERO kare.gunnar.floystad@zero.no
Norway Ida Thomassen The Future in our Hands (FIOH) ida@framtiden.no
Poland Andrzej Ancygier Climate Analytics andrzej.ancygier@climateanalytics.org
Poland Andrzej Kassenberg ISD a.kassenberg@ine-isd.org.pl
Poland Aleksander Śniegocki WISE Europa aleksander.sniegocki@wise-europa.eu
Poland Krzystzof Księżopolski Warsaw Institute kmksiezopolski@uw.edu.pl
Poland Krzystzof Jedrzejewski Polish Climate Coalition k.jedrzejewski@koalicjaklimatyczna.org
Portugal João Branco Quercus
Portugal Francisco Ferreira ZERO francisco.ferreira@zero.ong
Romania Lavinia Andrei Terra Mileniul III lavinia.andrei@terramileniultrei.ro
Romania Ioana Ciuta Bankwatch ioana.ciuta@bankwatch.org
Russian Federation Alexey Kokorin WWF akokorin@wwf.ru
Russian Federation Oleg Pluzhnikov Business Russia olegplug@bk.ru
Russian Federation Michael Yulkin RSPP yulkin.ma@gmail.com
Russian Federation Vladimir Chuprov Greenpeace vladimir.tchouprov@greenpeace.org
Slovenia Barbara Kvac Focus barbara@focus.si
Spain Hector de Prado FoE sosclima@tierra.org
Spain Josep Puig S. and T. for a Non Nuclear Future gctpfnn@energiasostenible.org
Spain David Howell SEO Birdlife dhowell@seo.org
Switzerland Georg Klingler Greenpeace georg.klingler@greenpeace.org
Switzerland Patrick Hofstetter WWF Patrick.Hofstetter@wwf.ch
Thailand Tara Buakamsri GP Southeast Asia tara.buakamsri@greenpeace.org
Ukraine Oleg Savitsky Independent Consultant olehsavitskyi@gmail.com
Ukraine Andrii Zhelieznyi NECU ferum@necu.org.ua
Ukraine Oksana Aliieva HBS Kiew Oksana.Aliieva@ua.boell.org
United Kingdom Dustin Benton Green Alliance dbenton@green-alliance.org.uk
United States Alexander Ochs SD Strategies ochs@sd-strategies.com
United States Rachel Cleetus Union of Concerned Scientists RCleetus@ucsusa.org
United States Basav Sen SEEN basav@ips-dc.org
United States Christoph v. Friedeburg Independent Consultant cvfriede@yahoo.com